
Hello and welcome. I am Sander van der Steen, one of the lead engineers on the

Manuka renderer since 2022 and virtually with me is Robert Cannell, the lead

engineer of the Gazebo renderer. Today we will explore our rendering architectures

of the 2 in-house renders used at Weta Digital.

● That is right, this is 2 talks wrapped into one. First up is Manuka which is our

offline, final frame rendering and the second renderer discussed is Gazebo,

which is used on stage and also on artist workstations in order to provide

interactive feedback

● For Manuka, I will briefly discuss the history before focusing on details of

Manuka’s architecture that stand out and might not be quite what you expect.

In order to do so we will also leave other parts of the renderer uncovered.

After discussing Manuka, I will hand over to Rob to discuss Gazebo in more

detail and

● At end of this talk there should be time for a small Q&A where we can try and

answer any further questions you have.

Manuka dates back about 10 years or so, and to understand the history of Manuka

we first need to quickly touch on Pixar’s renderman, which 10 years ago was sporting

the top logo. Pixar’s renderman, or PRMan in short was and still is one of the most

widely used offline renderers for film production today. PRman is what is called a

“Renderman compliant renderer” which means it adheres to the Renderman interface

specification from 1988. There is a lot that we can say about this, but what is

important here, is that it basically means that the renderer ingests data using a “open”

API or scene description files called RIB.

● Weta 10 years ago was also using Prman as a renderer. This means that our

pipeline was geared towards delivering these RIB files.

● However, we were having scalability issues with PRMan. At the time, our RIB

based pipeline required many bakes as “intermediate products”, and these all

needed to have their dependencies tracked. There was a desire to have a

renderer that “would just render the scene at once, no matter what”. There

was also the desire for researches to implement the latest technologies

directly, without bounds. Weta has always had a strong academic connection.

In other words, we wanted to render reality with a minimum of trickery which meant

modeling natural appearance.

A key example of Manuka being a research renderer is the fact that Manuka is a

spectral renderer. It is the first spectral renderer that was used in commercial VFX.

Spectral rendering implies that we treat colour as spectral power distributions, as

opposed to the normal three channel representation. This gives us improved colour

accuracy.

As interesting as spectral rendering is, it is not the topic of this talk. And so if you

want to know more about spectral rendering. I suggest you start with the excellent

spectral rendering course done at Siggraph 2022 last year.

● Since making that decision on making our own renderer, Manuka has been

successfully used in many VFX productions. I picked a few, but there are

many many more, and there is plenty more in the pipeline!

● So we are here to talk about rendering in movie production. To understand

this a bit better, let’s do a crash course into Weta’s content creation pipeline.

We start with the DCC’s on the left, Maya & Houdini are the main ones but we

have a wide range of other products in use at Weta.

● Those DCC’s all produce assets (or data), which can be in the form of our

proprietary scene description Atlas (which predates USD and is a topic in

itself), or the increasingly common Universal Scene description.

● The final category of content are what we call “procedurals”. They do data

amplification at render time, generating renderable content typically as the

content is ingested by the renderer. Think hair, trees, woven cloth etc.

● This data then gets to the renderer, Manuka. But this picture is not complete:

○ There is Gazebo which is used for interactive feedback and the

Material authoring pipeline, both hooking into this web.

● In reality, a pipeline might as well look a bit more like this. Feedback notes

from the director or studio can change anything anywhere back up the chain,

causing version churn at any point in time. There is also work that can have an

almost cyclic dependency. Think of animation on top of a boat in the ocean,

hair interacting with water etc. The VFX pipeline, at least at Weta, is less

linear compared to a games pipeline.

● Luckily we are not here to talk about complex pipelines, we are here to talk

about rendering. But the diagram does highlight the 2 distinct areas that we

will the focus for the rest of this presentation. There is final frame rendering in

Manuka on the right and there is Gazebo at the bottom, combined with our

procedurals, which is what drives artist experience at weta.

● The pipeline ultimately makes API calls into libmanuka.so, which is the

Manuka renderer, loaded as a dynamic library.

● The API layers started life as being100% RISpec compliant, and for large

parts we still are though there are places where we deviate or extend the

system. One example is our implementation RSL, the renderman shading

language. Manuka is spectral pathtracer, and there are differences as a result.

Other changes exist in the interactive rendering space to perform live edits

● However, for Manuka we are primarily interested in non-interactive rendering

in this section of the talk.

● Later on, things will get more interactive, where Gazebo is discussed. Gazebo

provides that interactive preview that artists need to do their work. This is

especially true for procedural geometry, which is based on custom data that is

not trivially translated to polygonal geometry in the DCC’s. The procedurals

can generate data for the renderer directly, providing an accurate

representation of the final frame in Gazebo. Robert will discuss how this works

in more detail in the second part of this presentation

● To visually illustrate Gazebo and Manuka, this example shows a shot first

rendered from inside the DCC in Gazebo as an artist might see it, and then

rendered in Manuka as final frames.

● So the compare the renderers in a table. You can see the different uses here:

○ Gazebo is used everywhere, stage anim, layout fx etc. The frame time

is typically < 0.1s or 10fps, though depending on the use, frame times

can vary.

○ Manuka Interactive is a “interactive” version of Manuka, which I will

only briefly cover at the end of the talk. It’s use is limited to lookdev

and lighting and the frametime is roughly in seconds

○ And finally, there is Manuka Batch, or Manuka offline. Frame times are

measured in minutes or even hours and it produces the highest quality

images that are used as final frames.

And with that, we can conclude our 10.000ft view of how our pipeline works at Weta

Digital. Now let’s get a little closer to the action and zoom into rendering a bit more.

● To setup some boundaries for this talk, we will assume that all that pipeline

stuff is covered and that, somehow (and we don’t really care how) we have in

memory available camera, settings, geometry, lights textures. What we are

going to focus on next is unique parts on how Manuka performs rendering.

● One key architectural change in Manuka is the way shading is executed. Now

while most if not everyone in the audience will know what shading and

shaders are, the definition of a shader is somewhat lose and Manuka takes it’s

own spin on it due to the way shading execution is done.

● Most renderers execute in what is known as a shade on hit system. Rays are

generated, you run intersection on the geometry, you perform shading

calculation, taking into account surface normal, lights, textures etc. You

evaluate the bidirectional distribution function to produce color and splat that

to your image. You may decide to generate more rays to a certain sampling

threshold is reached. The more rays, the smoother your image, but the longer

it takes.

● Manuka does this differently; in that we don’t start the generation of rays until

we have done ALL the shader executions.

○ This may sound counterintuitive at first, but doing things this way gives

us a few advantages which we will cover in more depth later in this

talk, but a small spoiler, this is done for performance reasons.

○ Consequentlty shader execution in Manuka is not quite traditional as

we don’t have access to the light information, making BxDF evaluation

impossible.

● So what we do instead is evaluate to a what we call a material, dealing with

direction independent computations including texture sampling.

● Beyond shader execution, which reauires more context and information that

we will provide later, we also need to determine at what frequency or density

we want to evaluate those shaders.

● This is decided as part of the tessellation phase and let’s cover this next.

● The purpose of tessellation is to produce micropolygons. Typically for a

production render, micropolygons are sub-pixel in screen-space, though

adjusting the size of your micropolygons is obviously a common

performance/quality trade-off. The micropolygons are fed into Manuka’s

shading phase, and so the density of those micropolygons controls the density

at which shaders are executed and as a result textures are sampled etc.

● The output of Manuka’s shading is stored on the micro polygons vertices, and

again, these are then the full set of input parameters to evaluate the BxDf

when later on we start shooting rays.

● So how far do we dice or tessellate? There is no easy answer to that and it

depends on many settings. What is true is that, in most cases, we need a

dicing camera (which could be the eye camera) before we can start

tessellation. World distance and orientation is a key driver for how fine our

sampling will be. Another key setting is the shading rate which is simply a

artistic control to the renderer.

● Another option is to run Manuka in a special mode, producing oracle data.

These files can be fed into a subsequent renderer with information on how

much tessellation you are going to need.

● Exemplars, or instance “sources’ are obviously special case in this mode and

come with a few limitations. At a high level, we are simply going to uniformly

dice the exemplar at the density needed for the instance that needs the

highest density, typically the one most in view of the dicing camera.

● Manuka has been designed to deal with very large amounts of instances.

Multiple billions, and they can be nested, which means instances can have

other instances which can have other instances and so on and so forth. This

can reach quite a few levels.

● Also, procedurals can produce instances upon execution, but also,

procedurals can be instanced themselves.

● Taking a quick look at this video, you can see an extreme amount of

procedurally generated instances that are handled by Manuka.

● Instancing typically uses uniform dicing, with the dicing oracle providing the

dicing rate required for the instance closest to the camera. However, there are

scenarios where this breaks down.

● For example, if you have a single instance of a large object very close to the

camera, dicing the exemplar for that instance uniformly might be too costly as

it will produce a large amount of data. The instancing system needs to deal

with this and it can using “large instance optimisation”.

● Another important task of the instancing system is to make sure there is

consistency between frames to avoid popping LOD’s.

○ The instancing system together with the oracle can generate shading

LOD’s which results in more stable dicing rages for objects, resulting in

temporal stability. This is demonstrated with this flyby in a forest of 1M

trees.

● But, instance counts are all cool, in reality in nature, things are seldom 100%

identical. Artists will want to slightly alter the appearance of each instance by

varying a texture or shading parameter. This is straightforward to implement in

a shade-on-hit architecture where the full shader is executed each time, but

for our shade before hit system this presents a problem.

● To allow shading variation. Manuka has a few tricks up it’s sleeve.

● First of all, you can provide multiple shading variations for an exemplar, all

using the same geometry/topology. This works well when you want say

multiple variations of leaf colors. Using those variants, Manuka can interpolate

between them at render time. This however breaks down when there is a

shading parameter that is driven by a world position, such as a snow or flood

line.

● Should artist need this level of control on the instances, Manuka can also de-

instance the data on ingestion.

○ This gives artists the artistic freedom of using instances in their content

authoring pipeline and have it supported by the renderer without a

flattening or baking step for the artist

○ Obviously, this does come at a cost, and in current internal

developments we are looking at exploring a more elegant solution to

this.

● (6 min)

● Regardless of how and why we tessellated, the next step is shading and no

rendering talk would be complete without diving deeper into shading

● We already hinted that shaders deal with direction independent computation.

Let’s explore this a little bit more in the following few slides.

● So shading in Manuka is dealing with shape specific computation that

determines a shape’s appearance.

● The output of shading a surface for volume is what we call a material.

● And so to understand what shading does in Manuka, we need to understand

the concept of materials, so let’s look at this first.

● A material determines how light interacts with a surface or a volume.

● There are 3 main types of interaction, modelled with bidirectional distribution

functions, commonly referred to as BxDF’s. The main modes of interaction are

reflection, transmission and emission.

● Manuka does not define a single “uber shader”, but rather ships with a set off

187 BxDFs that shader writers can combine and layer to create certain effects.

These BxDF’s themselves are hardcoded.

● But with the set of BxDF’s available, we have been able to satisfy the needs of

Weta’s production. The BxDF’s can be grouped and we have solutions

available for metal, thin glass, hair supporting eccentricity and double cylinder

models, glints, yarn and woven cloth, subsurface etc.

● In Manuka, we call BxDF’s lobes, and the way they are combined defined the

look of the object. While the BxDFs you can choose from is large but limited,

the way you can combine them is user controllable. There are various ways to

blend lobes together to produce a wide range of effects as can be seen on this

image from the Manuka internal documentation

● A common practical layered material is car paint, but in reality there are many

surfaces that combine many “layers” and we need the ability to model them to

reach the fidelity we want in our final images.

● These layers are defined per shape and the more layers used, the more data

we store on the micropolygon vertex in order to compute it during the path

tracing phase.

● The ways in which we combine these is using the above blending modes and

somewhat straightforward. Most modes are described in the paper linked.

● Now that we know what a material is, we can switch back to what shading in

Manuka does.. It creates the properties for a material!

● Breaking that down, we

○ setup a set of lobes or BxDFs and how they layer together.

○ We evaluate the direction independent parameters for each lobe,

together with lobe and layer weight. Note that texture sampling is done

here, so these parameters are frequently controlled by 1 or more

textures.

● The output of the shading is stored on the micropolygon vertices, and again,

more layers is more data.

● And with the shaded output we can now, during LightTransport or path tracing,

evaluate what we call the layering program. This is what produces the final

color or spectrum, taking view and light directions into account. The inputs to

the layering program are interpolated from the neighboring vertices which

have computed output data.

● The layering program can also be sampled in order to produce a direction for

generating new ray bounces.

● Spectral uplifting is also part of this phase of the renderer.

● Spectral uplifting is a (very) under-constrained problem and there are many

solutions with their own trade-offs, out of scope here.

● With the overview model of how we produce pictures now covered, let’s circle

back and look a little bit closer into our shaders.

● Shaders are written or code generated in the Renderman Shading language,

or RSL in short. This dates back to the renderman specification I mentioned at

the start.

○ The inputs to the shaders are things like attributes, primvars and

shader parameters. These are what artists use to tweak

○ Shaders proceed to execute their logic, reading textures and executing

user defined logic.

○ Shaders can also, indirectly, execute co-shaders, which are basically

other shaders, which can again read more textures and execute further

coshaders.

○ Ultimately, we output the material structure, parameters and optionally

AOV’s for the next stage in the pipeline. It is this material structure that

defines the eventual look of the object.

● Now, different sections of a shader can run at different frequencies. Let’s have

a closer look.

● A shader has certain “pipeline stages” and these stages run at different points

in the shading execution and also at different frequencies.

● A table of different shading stages can be seen above. While diving into all the

stages Is out of scope, let’s do a simple walkthrough of some key stages to

understand how this works.

● The mnk_init call is the main entry point for shading. It is executed once per

primitive and It is responsible for setting up the material structure.

● As you can see here, we are setting up a material that has 2 Lambertian lobes

using lambertion reflection and transmission. While it is possible to have more

layers, most production shaders have between 1 and 10 layers, the average

varying per production.

● In the pre-lighting stage we compute the material parameters, per vertex.

● Notice that the input is the MaterialBoundary that we defined in the init stage.

Here we set the material to be 25% reflection in red, and 75% transmission in

green.

● Displacement is another shading stage, which is somewhat decoupled from

the other stages. Displacement is computed per micropolygon vertex and the

purpose of a displacement shader is to alter the position and normal of a

vertex, usually driven by a displacement function that samples a texture. This

is “mydisplacement” here.

● As we have already seen, shader code is RSL. Now we don’t actually publish

the RSL together with the asset, there is a transformation step where we

generate a MSLO file. You can compare this loosely with a C source file that

has been expanded by the pre-processor. As such, it is able to compile with

little dependencies. The MSLO is a compressed format.

● The MSLO files are what is read by Hyperion, which is our shader compiler.

Hyperion’s job is to transform the MSLO into a MSHD, which is actually

executable at runtime. Like any compilation, this compilation can be slow and

because the MSHD is effectively a shared library, we need to make sure the

ABI is stable. To avoid many machines compiling the same shader, we store

compiled shaders in a network cache, which is flavoured by the Manuka

version used.

● Over the years, Weta has accumulated a large set of shaders. While shaders

can be hand-written as RSL, they can also be code-generated from a graph.

We have proprietary tools for shader authoring which will be topic for another

day, but what I wanted to illustrate here is that shader graphs are very large.

Having 10.000 nodes in a shader graph is nothing exceptional. These large

graphs, and thereby large amounts of code do put pressure on the shader

compilation in Hyperion.

.

● So a final word then on Hyperion, which is our shader compiler distributed

internally with Manuka. It is backed by LLVM version 11 and it scales to very

large shaders. 100K+ lines of RSL are not uncommon. And while OSL is not

directly supported by Manuka, our common shader size is a concern for

moving to other languages. For various reasons we are looking to move to a

newer shader back-end but it is too early to go into depth here. We hope to be

able to discuss new shading tech in an upcoming talk.

(5 mins)

Now all of this will likely still have you wondering. Why do we do shade before hit?

Hopefully you understand how we do shade before hit, but I have been pretty vague

on why we do shade on hit. I mentioned that we do this for performance reasons but

have not explained how this works. What I have explained is the difficulty with

instancing. Still, lets look into the wins more in this section.

● As mentioned in the previous section, we have very large shaders and that

makes executing those shaders expensive. We can get performance if we can

reduce the amount of times we execute the shaders.

● By storing shader execution on the micropolygon vertex in a directional

independent manner we create the ability to reduce the amount of shader

execution in 3 ways:

○ Sampling the same polygon multiple times only executes the layer

program multiple times. The shader data is simply interpolated from

the neighboring vertices.

○ Because the data is direction-less, the data is re-useable over “similar”

renders. Think about an artist placing a light in the scene. To move a

light, no re-shading is needed if all the data is correctly cached.

○ Even consecutive frames that are “not too different” can re-use shaded

data. Think static objects at medium/far distance from the camera.

● Beyond these advantages, we reduce the load on the path tracing phase. No

texture sampling is done during path tracing, avoiding the need to sample

textures and reducing the memory load on this phase of rendering as we don’t

need to open up all these large files.

● And finally there is CPU caching advantage. Because shading is executed per

object, or rather per grid, it is highly likely that all vertices in the grid will

access the same textures. This helps limit the IO overhead of our texture

fetches as the textures will likely live on a network share somewhere.

Remember that render compute nodes in a renderwall will have little to no

local storage.

And finally, shading can be easily distributed and the result of the pre-shading can

be used for resuming renders, avoiding paying the cost for the data ingestion and

tessellation a second time when the circumstances allow it.

● To clarify this further, lets do a thought experiment, let’s say we can evaluate

our shaders in a range of 3 to 30 thousand times per second per thread,

yielding a throughput in the order of half a million to 5 million vertices per

second on a 64 core machine. These numbers have nothing to do with the

image here and are largely illustrative to explain the concepts.

● A scene might have 20M pre-shaded vertices, which would take roughly 20s

to compute in this model. A shade-on-hit renderer would obviously not pay for

this cost at this stage.

● That scene might produce 200M “material instance”, which are basically

points at which the layer program is executed and we have evaluated the

BxDF lobes. This is done over 64 progressions, yielding that we would need

roughly 3.1M hits per progression in a shade on hit model.

● Now it should be clear that evaluating the layer program is substantially

cheaper compared to evaluating the full shader. The more times you need to

evaluate your shader, the more it makes sense to have these evaluations pre-

computed on the vertex.

● Now these numbers vary wildly and the parameters of your render can change

to make things slide into favour for one or the other architecture. Typically you

could say that the more progressions you do, the more shade before hit

becomes appealing. This is an important reason why we state that Manuka is

a :time to last pixel: optimized renderer.

● However, if your input geometry is very or even too dense, you would end up

pre-shading too much data, swinging the pendulum the other way

● The argument of coherent texture access, while present, is very hard to

quantify. There are a lot of variables at play for texture access on the network

layer. There is the CPU hardware and it’s caching tiers, the storage back-end

and shaders and textures used, combined with things like network traffic and

actual filer usage. Testing this fairly is next to impossible as there are always

renders going on.

● To continue on the topic of textures, this is a table from the 2018 paper I

referenced earlier. The numbers no longer reflect current production data, but

the point it illustrates around reduced texture access is still valid today.

● So the 3 columns are data from 3 different productions and the top row shows

the amount of texture data on disk was used for a typical frame. The second

column then shows how much actual data is being read. This reflects the

mipmap level and coverage for instance.

● The 3rd row is the number of texture file we have. For modern productions this

is way more these days. The number of mipmapped EXR textures we read per

frame can be 50-70K these days.

● Next up is the number of layers that we feed to our layer program. You see

here that while we support a very large number of layers, the actual number of

layers, on average is not to too great. While the amount of data we store per

vertex can be between 4-200 bytes, in reality it is often much more towards

the lower end. The data is also very compressible.

● In short the takeaway from this table is that pre-shading allows us to store less

data during ray traversal, which in reality means we can render bigger scenes.

Now it should be clear that shade before hit still is a trade-off. The most obvious

trade-off is our longer time to first pixel. This can make Manuka appear “slow” as a

shade on hit renderer might already show some (noisy) pixels, Manuka will still be

pre-shading. The time to first pixel as it is called is not first in class.

The other drawback is the interaction with instancing. We have mentioned this

before and while we can de-instance on scene ingestion, this does consume more

memory. This won’t impede artist workflow where the memory is not a concern, but

in reality a lot of shots will have memory constraints, and so simply de-instancing

everything on ingestion is not always feasible.

(4 mins)

And with this, we have covered the majority of Manuka;s architecture, but we have

also glanced over some very important features and aspects. Let’s use this last

section of the presentation to cover a few use-cases in Manuka that might be

unorthodox.

Now you may think that this architecture is not particularly well suited for live or

interactive rendering and you’d be right.

However, Manuka does have a live rendering mode, which prioritizes time to first

pixel instead of final images. This mode does a few things:

● It switches the shading back-end to be on-demand. This can be best viewed

as an intermediate between shade on hit and shade before hit. Rather than

shading all geometry up front, we shade the grid of the object only when we

first hit it and then store it in a cache. This means our time to first pixel is

reduced. We tessellate and shade a shape only when it is hit by a ray. This

does produce a problem in that we can only trace rays when the geometry is

in the BVH, which means we can’t do displacement in this mode.

● Live rendering mode in Manuka also supports re-shading, which allows you to

cache the tessellation step so that you don’t have to execute it again when

you change something “simple” in a shdaer like a colour.

● And finally, this is a fully editable mode of Manuka, where changes can be

made to geometry/lights/instances “on the fly”. In order to support editing

better, the BVH used in this mode is layered, meaning that we don’t have to

rebuild the full BVH for localized edits.

● The interactive rendering section is a section of Manuka where we can see

Manuka deviating from the Renderman API norm. The Renderman API was

simply not designed for this flexibility and the APIs we use for editing can be

considered more modern. Perhaps in the future our offline rendering will also

move to a more modern API.

● Now even though we only briefly cover lighttransport and it is conceptually

relatively straightforward, it is actually a fairly large section of the Manuka

code base.

● Doing Light transport in a performant way is a very active area of research. In

a scene like this, where there are many highlights, reflections and refractions,

brute force will simply fail to produce a sharp image in a reasonable

timeframe.

● In the LightTransport section of Manuka, it more closely resembles a

“research renderer” as opposed to a “production renderer”. Many techniques

are explored and controllable for the knowledgeable artist to work well in very

specific scenarios. This suits us well, different shows will require different

techniques as they have different problems. Avatar 2 had a lot of water and

caustics for instance, whereas another show such as Alita Battle Angel can

really push what we do for rendering eyes.

● The caching of shaded data has been mentioned before, but the usage of it is

still expanding and so it is worth mentioning it separately here.

● What we see here is a more detailed pipeline of Manuka and what we have

discussed. The shading cache , we internally call this a Micropolygon store,

and this data can be used to feed directly into LightTrasport. It should be clear

that if we have “hot” MPStore caches, our time to lighttransport, and thereby

our time to first pixel, can be greatly improved as we can bypass a large

section of work.

● We can also use the mpstore data to generate good approximations for earlier

in our pipeline. The geometry includes the output of displacement and can be

baked with an albedo color per vert, giving a simple object that can be used as

a reference elsewhere.

● Now MPStores can for also be used implement multi-frame rendering with

(nearly) static content. We basically store (slightly) more shaded vertices on

the geometry to satisfy the camera/object movement for the frames covered.

● Similar to real-time rendering, multi-frame rendering allows us to re-use some

of the data form the previous frame. In this case, we can spread the cost of

procedural expansion, tessellation and shading for these objects.

● And so while a multi-frame render will take more time compared to a single

frame, the extra time is compensated by the extra frames that you save.

● And finally, to conclude, Manuka is still a very active area of development at

Unity/Weta Digital. To highlight just a few areas of improvement we are

looking into:

○ The experience of cloud rendering for Avatar 2 has given us an

excellent view on where pain points are for us and what we can best

do to avoid them.

○ Other areas of development is a more flexible shading back-end, so

that we can combine the best of both worlds for shade before and

shade on hit.

○ Interactive rendering is another key area of improvement. This works

together with integrating ever more tightly with USD workflows and

USD enabled DCC’s.

○ And maybe, we will also render more blue people in the future too.

	Slide 1: Wētā Digital rendering architectures
	Slide 2: Agenda
	Slide 3: Wētā Digital rendering architecture
	Slide 4: Wētā Digital rendering architecture
	Slide 5: Wētā Digital rendering architecture
	Slide 6: Wētā Digital rendering architecture
	Slide 7: Wētā Digital rendering architecture
	Slide 8: Wētā Digital rendering architecture
	Slide 9: Wētā Digital rendering architecture
	Slide 10: Wētā Digital rendering architecture
	Slide 11: Wētā Digital rendering architecture
	Slide 12: Wētā Digital rendering architecture
	Slide 13: Wētā Digital rendering architecture
	Slide 14: Wētā Digital rendering architecture
	Slide 15: Let’s do some rendering
	Slide 16: Wētā Digital rendering architecture
	Slide 17: Wētā Digital rendering architecture
	Slide 18: Wētā Digital rendering architecture
	Slide 19: Wētā Digital rendering architecture
	Slide 20: Wētā Digital rendering architecture
	Slide 21: Wētā Digital rendering architecture
	Slide 22: Wētā Digital rendering architecture
	Slide 23: Wētā Digital rendering architecture
	Slide 24: Wētā Digital rendering architecture
	Slide 25: Shading & Materials
	Slide 26: Wētā Digital rendering architecture
	Slide 27: Wētā Digital rendering architecture
	Slide 28: Wētā Digital rendering architecture
	Slide 29: Wētā Digital rendering architecture
	Slide 30: Wētā Digital rendering architecture
	Slide 31: Wētā Digital rendering architecture
	Slide 32: Wētā Digital rendering architecture
	Slide 33: Wētā Digital rendering architecture
	Slide 34: Wētā Digital rendering architecture
	Slide 35: Wētā Digital rendering architecture
	Slide 36: Wētā Digital rendering architecture
	Slide 37: Wētā Digital rendering architecture
	Slide 38: Wētā Digital rendering architecture
	Slide 39: Wētā Digital rendering architecture
	Slide 40: Why shade before hit?
	Slide 41: Wētā Digital rendering architecture
	Slide 42: Wētā Digital rendering architecture
	Slide 43: Wētā Digital rendering architecture
	Slide 44: Wētā Digital rendering architecture
	Slide 45: Wētā Digital rendering architecture
	Slide 46: Wrapping up
	Slide 47: Wētā Digital rendering architecture
	Slide 48: Wētā Digital rendering architecture
	Slide 49: Wētā Digital rendering architecture
	Slide 50: Wētā Digital rendering architecture
	Slide 51: Wētā Digital rendering architecture

