

Generalized Decoupled
Shading
Oxide Games

Dan Baker, dan.baker@oxidegames.com

Generalized Decoupled Shading

What is decoupled Shading?
• Shading is decoupled from the screen

sampling – We shade first, then rasterize
• Similar to concept of REYES
• Lots of advantages

• Shader Anti Aliasing
• Better BRDF accuracy (distinct from

AA)
• Variable shading

• But no major game/engine built on it in a
general way

• Ashes of the Singularity had
rudimentary solution

• Mega texturing from Doom might
have been a path to get there

What is decoupled shading

• Shade the object somewhere first
• Raster the already shaded object

onto the screen
• Hopefully only shading only the

visible parts and appropriate LODs

Obstacles for making a decoupled renderer

● Art assets need different process, more memory, difficult
to make robust

● Too much memory needed for sample storage (also cited as
a reason for abandonment of Mega textures)

● Performance overhead too high compared to other rendering
methods

● Visibility not fine grained enough, too many shade
samples computed which aren’t visible (also exasperates
memory pressure)

● Material integration – need to build a virtual shader
stage

● Too many problems to build a major game

Prior Engine version

Ashes of the Singularity
• Rendered every object into its own

section of a texture
• CPU size estimation, MIP processed

at highest level, filtered down
• Terrain used own custom stitching

system
• Worked because very specific game

• Not enough Bullets – VR demo
• Similar to Muellar et al, broke

models into small chunks, did
visibility estimation, streaming,
network simulation

• Shared shading, shade delay
• Too many drawbacks

Anti-Aliasing

A simple shader such as:
Return IntTexCoord.x % 2 == 0 ? 1.0f : 0.0f

will alias instantly

In texture space might
look perfect

Will get near noise on
rendering

Anti-Aliasing

Decoupled Shading, samples are evaluated then filtered, results will
be typical linear blur

In shade space it’s
exactly what we want

Get blurrier via implicit
AA, but not noise

Temporal Stability

Sampling introduce tiny differences in things like normals between
every frame – due to sub pixel sampling differences. Causes
aliasing. However, in addition to aliasing, any filtering of samples
alters most BRDF formulations

A few techniques to help solve both these issues (e.g. LEAN
mapping), not always practical

The screen spaced aliasing component causes shimmering and is a deep
intrinsic problem with deferred and forward rendering for games.
Altering the BRDF more of a problem for film

Sample Shade

Anti-Aliasing / Temporal Stability

Decoupled shading, input samples are always the same, then filtered. This
helps anti-alias screen space aliasing.

However, can’t filter inputs to BRDF and not alter shape of a BRDF. With
decoupled shading, if BRDF samples are aligned to shade samples, (e.g.
exact point sampling), can preserve shape of the BRDF. Toksvig factor
works quite well if need to handle MIPs and don’t want to precompute

Shade Sample

Overview

● Main issue is always the same
thing, we shade too much

● Is there a way to only shade
what is visible? Must be fine
grained enough to not
overshade much

● Is there a way to shade only
what is visible at the right
MIP equivalent level(s)?

● Is there a way to use the
visibility information to
dynamically allocate per
frame what memory is needed?

Underside of ships is shaded, even
though not visible

Overview – The concept of a Shadel Chunk

● Lots of approaches to problems
○ Breaking objects apart
○ Allocating texture coordinates based on screen projection

(defeats point of Decoupled Shading)
○ Shading triangles based on there visibility

● New approach
○ GPUs are fast. GPUS are programmable. Can’t we determine in a

pixel shader what is visible at a fine grained level?
○ The core concept of our approach

■ Shadel (Shaded element)
■ Shadel Chunk (a small cluster of Shaded elements)

○ We shade our objects with shadels, then draw rasterize them
with the shaded results

○ We always shade a chunk of shadels, not a single shadel

Shadels

● How small is small? Our solution uses 8x8 chunks of
shadels. 8x8 because

○ Small enough to not get significant overdraw
○ Big enough (64 samples) to run well in a hardware thread group,

(typically 32)
○ Good memory compromise(ends up being ~1.5 bit per shadel)
○ Object has one set of texture coordinates just for shadels,

similar to rendering to texture, but without a real texture to
render to. This gives objects a mapping of shadels

Overall strategy

● Bind some UAVs to the pixel shader and use them to mark
which shadel chunks are visible – fancy way of saying we
are going to output data other than raster data from
pixel shader

● Use the visibility info in the UAVs to allocate storage
space in a custom virtualized space

● Use the visibility info to create work queues to shade
the shadels

● Run materials with compute shaders to shade the shadels
○ In compute shader, determine attributes that would have come via

geometry by using a triangle ID map and using the model’s geometry
○ Can get derivatives in compute shaders now, yay!

● Raster the scene with simple shaders with everything
already shaded

○ Can mix in forward rendering stuff at this time with ease

Virtualizing our shadels

● All objects, (even chunks of world),
must have texture coordinates on
them

● Create one very large master
‘shadel’ texture storage. By large,
in our case it is 256kx256k, also
sections of this will represent the
MIP chain

● Actual storage is ~4kx4k, depending
on settings

● When an object is potentially
visible, CPU side max space
estimator will allocate a chunk out
of the large shadel chunk

○ Only has to be a very coarse allocation
– resolution of alloc dependent on
maximum possible ‘MIP’ map

○ No worries if it isn’t visible or over
allocated, it will have minimal perf
overhead

● When object is no longer possibly
visible, remove from storage space

Our virtualized sheet is very big

● Virtualized sheet will
always be mostly empty

● Only small sections of
each MIP section will
be shaded

Virtualizing our shadels

● Shadel chunks allocations into
8x8 chunks of 8x8 shadel
chunks

○ Yes a chunk of chunks!
○ 64x64 shadels all together

● 2 textures
○ Offset texture – pointer into

actual shadel storage
○ Occupancy texture, for each

shadel chunk, 1 bit associated
if shadel chunk is occupied or
not

○ Counting bits lets us know the
suboffset for a chunk of shadels

● Custom MIP calculation, detail
levels sit in a specific part
of the texture

○ Some complexity here when lower
detail MIP levels become smaller
then the block sizes. Solution
is to snap allocations for
smaller sizes

Implementation

● Z Prepass
● Shadel Marking pass
● Work Aggregation
● Shading

○ Materials have multiple layers
○ Happens in Compute Shaders
○ Heavy use of DispatchIndirect
○ Processed on shadel chunks

● Final Rasterization

Z-Prepass

● Strictly speaking, optional
● More impact than a typical z-prepass

○ Because over shaded objects will involve more than just performance,
will allocate extra memory

Shadel Marking pass

● A chunk of shadel chunks is an 8x8 grid of 8x8 chunks, so 64x64
total shadels

● With this arrangement, the 8x8 grid is a single 64 bit value
that can double as a visibility field

● First, clear the visibility field/shadel allocation field.
○ Biggest performance issue when having an overly large virtualized space

● When the pixel shader runs during the marking pass, it writes no
output to color buffer (which is not even bound), instead it
manipulates the visibility field/allocation by using atomic or
operators

○ Faster to not do atomic operation or operation with an if statement if the
input is 0 (seems like this could be a hardware optimization…)

○ Need to use the [earlydepthstencil] attribute!

● Note - Parallel to the offset texture, there is an allocID
texture – a hash/ID of which object the allocation belongs to,
not used during this pass

Shadel allocation pass

● Occurs entirely on GPU
● Allocation is normally serial, to get some

parallelization, perform N allocations in parallel to N
different section of the virtualized space

● Frames will have different allocation even if nothing
changes, not deterministic

Building work queues

● For each shadel chunk marked, need to process the
material for it

○ Part of the rational for being 8x8 chunks to be a good size for
a compute shader to process

● Each object rendered has N blank ComputeIndirect
calls

○ Why N? Because our materials can have multiple layers
(discussed later)

● References One buffer which contains the header for
the computeindirect, for any object which has been
instanced (even if it wasn’t requested to render for
the frame)

What is in work queues

● A work queue contains a
list of shadel chunks to
process
• Shadel offset
• Object ID, MIP map
used

• Number of shadel
chunks that are
visible

Building work queues

● Count the amount of work for every allocated object
● Allocate space for the work queues

○ Similar alloc problem to shadel space, do in parallel

● Create the work queue and put a reference to it in
the indirect reference buffer

● Blank commands can be generated. An object can be
submitted but turns out to have no coverage,
therefore can be DispatchIndirect with 0 work items
in it, generated by scanning the region of the
virtual texture for marked bits

● Future work – be able to create different dispatch
indirects for each layer of material

Allocation Pass/Collection
• Iterate through the occupancy texture, using the allocation

information for each object rendering
• Counting bits, each bit represents a shadel chunk
• To get some parallel execution, we break the shadel storage into 16

parts, using a hash function to pick one of the sections to allocate.
This prevents serialization on the atomic increments

• Along side allocation, add an entry into shadel chunk execution buffer
containing

• Shadel offset
• Object ID, MIP map used
• Number of shadel chunks that are visible

• Allocation stats uploaded back to CPU, used to do global shading
adjustment if we get close to our maximum shadel storage. Sort of a
more detailed occlusion query

Allocation Pass/Collection

Get the object ID of whatever
is occupying this part of the

Shadel Storage Texture

64 bits spread across 2
textures, a bit set means that
shadel chunk is active and we

have allocated space

Happens in parallel across
many compute cores, the
order is not the same for a
work entry frame to frame

Running out of space…

● 1 Pixel means 1 shadel right? No…
○ We process MIP levels, so 1.25 no matter what (unless

brilinear!)
○ Shadel chunks are 8x8, so some wastage
○ Anisotropic filters- heavy edge on objects need more samples.

Better quality, but needs more space
○ And Transparency? Did we say transparency? Works just fine, but

will need more space
○ ~ Rule of them 2-3X shadels to pixels w/o transparency, 3-4x if

there is some transparency
● But still no guarantee we don’t use too many! All

sorts of corruption if we do

Biasing all MIP levels

● Similar to foveated render, can bias the amount of shadels we
process

● Simple concept – it’s effectively a MIP bias, so can use
fractional values to great effect (e.g. can undershade by .25
or so) – could hook into DOF to get more perf

● Each frame, upload our count buffer back to the CPU. CPU now
has perfect statistics of last frames usage, down to what
sections of the MIP were processed for any object

○ Lots could be done with this for content streaming… and we do none of
that yet…

● The engine has thresholds that cause a bias to happen across
all objects, then decrease shading bias if we go back to under
capacity

○ In rare cases – a ‘spike’ is still possible for a frame but usually caused
by overall aggressive shading settings, if bias relaxation is slow not
been a problem

ID map pre-processing

• Pixel shaders as input take a
barycentric attributes from
triangles from mesh

• In decoupled shading, invoked via
compute shader. No direct
correlation to geometry

• For Ashes, captured relevant
attributes like positions into
texture

• Lots of issues, mainly this took
too much memory

ID map pre-processing

• Attribute maps – rather
than store the input data
for a shaded sample, only
store the triangle ID from
the mesh

• Compute shader can now
load the vertices and
perform a similar
interpolation as a pixel
shader might have done

• Only extra data required
is an ID map, a 16 bit
uint

• Requires quite a bit of
memory, largest drawback
for this method – likely
there exist good
compression for this

• Index buffer of mesh and
geometry attributes bound
into compute shader as a
buffer

How to generate ID maps?

● Raster the scene from the perspective of the texture
coordinates

○ Texture space renders could invoke a pixel shader every frame ,
what Nitrous 1.0 did, but no fine grain culling, other issue

● Then do some small flood expansion and/or shader
math to make sure we get a valid sample, ok to have
a sample that falls outside of triangle withs some
appropriate cipping

● But… edge cases! Literally… Some triangles might end
up with no pixel coverage. Can end up with no
samples or seams

Conservative rasterization

● Some technique render at really high res,
○ But no guarantee here

● Our solution, render the triangle ID map twice
● First pass renders it normally
● Second pass renders with conservative rasterization
● The results of the 2 passes are then merged

○ If a sample is uninitialized in the first pass, then the
conservative rast pass is examined and if a non initialized
value is there then this value is used

● This ensures that ALL triangles which will be shaded
will always have at least 1 triangle ID location

Geometry Attributes

Geometry Attributes

Clamping epsilon is important, if we clamp to barycentric cords within triangle (e.g. 0 to
1) will create edge artifacts as samples will naturally fall outside of range. Very similar
to centroid/not centroid with MSAA enabled. Indeed, this is related to small triangles
that have minimal projection and ‘shimmer’ under normal rendering.

Material System

● OMG, what have we done? We’ve invented 2 new shader stages!
● Marking pixel shader

○ Just used to allocate shade space

● Shadel Shader, (Shadelader?)
● Very specific shader code preamble for a layer shader

○ Find section of virtualized storage to store/load
○ Interpolate mesh geometry

● A lot of boilerplate setup, and other integration to our
system

Oxide’s shading language

● Enter ZNO, e.g. Zinc Oxide
● Oxide’s full shading language replacement

○ Handles all shading syntax
○ Handles shader specialization, ala a ‘collection’ concept similar to hygienic macros
○ Some general cleanup of HLSL Syntax
○ Handles shader constant frequency, data binding, etc
○ Added features like ‘function types’, ‘function pointers’
○ Fast compiled C++ Data structures
○ A lot more… really an all day talk by itself

● ZNO has a material program, which has several types of shader stages
○ Vertex Shader/PixelShader pair
○ Layer Shadel Shader

● Layer Shadel shader stage is a virtualized shader stage, all setup code
already been generated, mostly looks like a pixel shader to a tech artist

● New derivative functions in SM 6.4 allow us to simulate texture fetches in
the same way

● But a ton of interesting new features – compute shader so you can get local
shared memory and other crazy things are possible.

Oxide’s shading language

● Layers
○ Nitrous does not have just one place to store shaded values, instead

it is configurable
○ Ara is set up with 5 layers of different bit depths and different

number of channels
○ Similar to deferred renderer… a little bit, but any layer can hold any

data, entirely at the discretion of the material
● Some of the layers can be marked as preserved,

○ At the expense of memory, can preserve calculated values from previous
frame

○ Function in ZNO language called GetIndexPrevSampleVirtualCoords, returns
the sample from previous frame if it exists, false if it doesn’t

○ 100% accurate, not a guess, if it was computed last frame its there

○ Mostly used for caching invariant things for now, but obviously has
big implications for future work

Scene Render

• This is the simple part –
objects have now been shaded,
with there shading samples
sitting in the shadel storage
space with the virtualized
buffers pointing to them

• Rerun the sample shader but this
time actually pull the samples
out of the shading –
reconstruction shader

• Run any forward shaders and
forward objects

• No hard rule on what runs
forward/decoupled. Object
materials can blend between
forward and decoupled elements
as desired. Each section is just
a shader stage

Demo

• Single asset from
Ashes using
decoupled

• Useful to visualize
the process

• Green/blue are
visualizing marking
buffers, green
means any bit is
hit, blue means a
section is entirely
visible

• Different sections
of the model are
visible on
different MIP
levels

Basic hand-wavy cost analysis

Operation Time(ms
)

Decoupled
specific

Clear DSE Mark Buffer .25 Y

Terrain Overlay .5 N

Shadow Maps 1 N

Rasterization Z prepass .75 N

Rasterization Shadel
Marking

1 Y

DSE work dispatch .75 Y

Shading 10* N

Rasterization Final Scene 1.25 N

Rasterization Foilage 4 N

Volumetric effects 1 N

UI 1 N

Post Process 1 N

• Full performance comparison between
decoupled and other rendering
techniques is prohibitive, since
need different materials and
optimizations to get valid
comparison

• Small demo/limited scenes are
not useful or indicative of
real world situations

• However, because decoupled is a
superset of forward, can get a solid
estimate of performance cost from a
roughly similar implementation if
using forward only

• Overhead is about 2 ms, around 10%

• Additional shadel processing appears
to be offset by more efficient
processing during shading

*Taken on a 1080Ti, on a Radeon 6800
timings were similar except shading
was twice as fast

But things aren’t so rosy…

● Decoupled Shading gets too expensive
for micro-geometry that is not well
charted (e.g. micro charted)

● Small triangles might have 1 sample,
but rounded up to 128 (2 MIPs,
64x64). Also fixed overhead for
sample

● ~4x more expensive
● Individual samples vary frame to

frame so hard to temporally reuse
● Currently, small objects fall back to

a direct only render
● Does look slightly better, decoupled

shading making an effort to clean up
samples, but not worth the perf

Possible Solutions

● For small charts,shade one sample (or perhaps 4 to get
derivatives)

● Use a hybrid shader – shader can blend forward/decoupled
at a per pixel level

● Really an LOD problem – can fix the LODs, problem would
be mitigated.

● Not generally true that forward is faster, however. For
some shaders, decoupled outperforms if it takes
advantage of cached intermediate values. So… it depends…

Conclusion, Decouple Shading works

● Decoupled Shading works in the general case, on
current hardware

● Minimal overhead (~10%)
● Limited memory overhead
● Compatible with ‘off-the-shelf’ assets and tooling

○ Ara has over 5000 assets, many from outsourcing studios
○ Over course of project, some assets such as leaders switched

from forward to decoupled because desire to use advanced
material features

● Some engine level book-keeping for virtualized
shading space – 256x256k is a lot, but for bigger
streaming world some management of active set is
required, larger virtualized support possible with
some more overhead

