
Testing Rendering Code at Frostbite
Jon Valdés

Rendering
Engine

Architecture
Conference

Rendering
Engine

Architecture
Conference

2424

Note: These slides don’t match the actual
presentation exactly.

I did a lot of video editing after the fact, so
take these slides as a rough approximation

Rendering Engine architecture conference 2024

Who am I?

Jon Valdés

Last 8 years at Frostbite Rendering in the Image Quality cell

Worked on FrameGraph, GI, post-processing, strand hair, a

bunch of internal tooling…

Lately also engineering manager

Rendering Engine architecture conference 2024

About this talk

This isn’t a talk on The Right Way to Test

It’s a talk on what we’re currently doing and what we’ve learned so far

If you think your system is better than ours, we’d like to learn from you.

Please present it!

Rendering Engine architecture conference 2024

Required reading

Aras Pranckevičius

- Testing graphics code https://aras-p.info/blog/2007/07/31/testing-graphics-code/

- Testing Graphics Code, 4 years later https://aras-p.info/blog/2011/06/17/testing-
graphics-code-4-years-later/

Rendering Engine architecture conference 2024

Required reading

Bart Wronski

- How (not) to test graphics algorithms
https://bartwronski.com/2019/08/14/how-not-to-test-graphics-algorithms/

https://bartwronski.com/2019/08/14/how-not-to-test-graphics-algorithms/

Rendering Engine architecture conference 2024

Required reading

Keith Stockdale from Rare gave this fantastic talk about their shader testing system earlier
this year

https://schedule.gdconf.com/session/automated-testing-of-shader-code/899160

https://schedule.gdconf.com/session/automated-testing-of-shader-code/899160

Rendering Engine architecture conference 2024

What is Frostbite
Why we care about testing

Rendering Engine architecture conference 2024

What is Frostbite

Electronic Arts’ internal game engine

Every game team within EA can use Frostbite if they want

We provide the technology, and help game teams use it

Rendering Engine architecture conference 2024

Frostbite’s mission

Help games ship.

Rendering Engine architecture conference 2024

The kind of games we make

Rendering Engine architecture conference 2024

Stability is one of our top concerns

A stable engine is a top priority for our game teams.
(Particularly for the ones that are shipping a game every year!)

- “This used to work on our last game, now it doesn’t”

- “This was faster last year”

- “We just tested features A, B, C and D together, and that breaks
feature E”

- “This new feature doesn’t work as expected”

Rendering Engine architecture conference 2024

Test infrastructure at Frostbite

Rendering Engine architecture conference 2024

Engine

Current infrastructure

Test
Runner

Test Result
DB

P4

Code, test data, screenshots always live in
same P4 workspace

Strong Code ⇔ Data interdependency

Rendering Engine architecture conference 2024

Engine

Current infrastructure

Test
Runner

Test Result
DB

Screenshot
Inspection

Tool

Test Result
Inspection

Tool

P4

Test
Dashboard

Rendering Engine architecture conference 2024

Testing Dashboard in 2016

- 3 branches
- 4 test suites: XB1, PS4, PC DX11 Forward + PC DX11 Deferred

Rendering Engine architecture conference 2024

Testing Dashboard in 2024
PC DX12, PC Vulkan, XBSX, XB1,
XB1X, PS4, PS4Pro, PS5, Switch,
iOS, Android

>1000 test suites

>200 SEs at Frostbite

Pre- & post-submission tests

Rendering Engine architecture conference 2024

Test types

Rendering Engine architecture conference 2024

Automated tests at Frostbite

Unit tests

Performance tests

Editor tests

Integration tests

Shader unit tests

Screenshot tests

Rendering “unit” tests

Rendering Engine architecture conference 2024

Automated tests at Frostbite

Unit tests GoogleTest

Performance tests

Editor tests “Click on
things in the UI”

Integration tests “Load level and do stuff”

Shader unit tests

Screenshot tests

Rendering “unit” tests

Rendering Engine architecture conference 2024

Automated tests at Frostbite

Unit tests

Performance tests

Editor tests

Integration tests

Shader unit tests

Screenshot tests

Rendering “unit” tests

Rendering Engine architecture conference 2024

Performance Tests

They run regularly in the farm

- We get alerts whenever
performance deviates from
history (both upwards and
downwards)

- Both CPU and GPU markers

- Significant manual
analysis/triaging, but it’s
useful to avoid perf drift

Rendering Engine architecture conference 2024

Shader Unit Tests

Just like C# unit tests, but invokes
individual HLSL functions.

Uses WARP to execute shader code in the
CPU, which removes GPU differences
(And we can run it on any farm VM)

Not using them a lot yet, but they’re pretty
neat :)

Rendering Engine architecture conference 2024

Rendering “Unit” Tests

No level, no scripting.
No infrastructure

Can memcmp
images/buffers, or
manual asserts

Rendering Engine architecture conference 2024

Screenshot tests

Multiple cameras per level

- Switch to new camera
- Execute setup commands
- Take screenshot
- Send screenshot to test harness
- Execute teardown commands
- Repeat

Rendering Engine architecture conference 2024

Comparing images with thresholds

Industry standard - nVidia FLIP: https://github.com/NVlabs/flip

We don’t use it. We use a bad per-pixel metric

Then the score for the whole image is the max normalizedDiff
of all pixels

It’s… not great. But in practice it’s… uuuuh… fine?

https://github.com/NVlabs/flip

Rendering Engine architecture conference 2024

Comparing images with thresholds

We get away with it because of
extremely stringent thresholds.

We try to lower the thresholds as
much as possible

And the test is per-pixel

Rendering Engine architecture conference 2024

Comparing images
“But a single different pixel will
make the test fail!!”

Yes!

A single bad pixel can be terrible

Like if the center of the sun
goes black :)

Rendering Engine architecture conference 2024

Comparing images

“But what about HW differences??”

Different reference images per
platform/IHV!

We currently have 32849 reference
screenshots

Rendering Engine architecture conference 2024

“Just make your test HW-independent!”

Many things are IHV/driver/compiler/OS-dependent.

- Biggest one: Texture filtering

- Fun one: Transcendental function precision
(DX only specifies min precision)

https://www.shadertoy.com/view/dtlyD8

NVIDIA 2080TI Intel Iris Xe

https://www.shadertoy.com/view/dtlyD8

Rendering Engine architecture conference 2024

RenderTests Screenshot Tests

- Exact comparisons

- Extremely robust

- Short-term pain

- Long-term bliss

- Inexact comparisons (thresholds)

- Range: [brittle, robust]

- Short-term bliss

- Long-term pain

Rendering Engine architecture conference 2024

The screenshot flame wars

Rendering Engine architecture conference 2024

Screenshot Wars

ASSERT_EQ(blend(white, black, 0.5), grey);

Rendering Engine architecture conference 2024

Screenshot Wars

“Is there banding on smooth gradients
in our volumetrics?”

“Is our sky the right shade of blue?”

“Is TAA converging well after a disocclusion?”

“Is the noise pattern on GTAO visible?”

Rendering Engine architecture conference 2024

Screenshot Wars

1. Setting up complex cases in code is sometimes not viable

1. “Correct” is a moving target. Often can’t mathematically validate correctness. Lots
of rendering techniques are approximations. “Correct” changes as approximations
get better (or worse!).

Rendering Engine architecture conference 2024

The ultimate reason

And, frankly,

Games have to ship

Ideal: Consider testing cost over system lifetime

Reality: This system needs to be in the game by next month

Sometimes it’s better to have imperfect tests today
than perfect tests two months from now

Rendering Engine architecture conference 2024

High-quality screenshot tests

Rendering Engine architecture conference 2024

Rendering Test Quality

Haven’t found a way to have low-effort, high-quality tests

Less long-term maintenance requires more initial effort:

- No reused data between tests

- Fully deterministic codepaths (“deterministic mode”)

- Exact comparisons

- Decoupled test (only test 1-2 systems)

Rendering Engine architecture conference 2024

High-quality screenshot tests

Avoid arbitrary delays in tests.
Use events instead

“Oops, works locally but fails on the farm,
because farm HW is oversubscribed and
it runs slower”We still use them

sometimes :(

Rendering Engine architecture conference 2024

Speed

Reducing delays allows
faster iteration + CI

Rendering Engine architecture conference 2024

How to get to this point
We got here, and you can too

Rendering Engine architecture conference 2024

Pain-based development

Screenshot testing is easy short-term
But cost accumulates

Test, platform count always go up

Pain drives improvements

Overall pain remains ~constant

Rendering Engine architecture conference 2024

How to improve infrastructure
Top-down: convince leadership Bottom-up: single engineer

attacks problem

Rendering Engine architecture conference 2024

These started as grassroots projects

Unit tests

Performance tests

Editor tests

Integration tests

Shader unit tests

Screenshot tests

Rendering “unit” tests

Rendering Engine architecture conference 2024

Pain-based development

Pains

- Screenshot comparison is too lenient

- Inspecting/updating screenshots takes forever

- Generating new reference screenshots takes forever

- Too many false positives/negatives

- Screenshot comparison is too stringent

Rendering Engine architecture conference 2024

Current infrastructure Grassroots project

Previous grassroots project

Engine

Test
Runner

Test Result
DB

Test Result
Inspection

Tool

Screenshot
Inspection

Tool

P4

Test
Dashboard

Rendering Engine architecture conference 2024

Test Result Inspection Tool

Rendering Engine architecture conference 2024

Test Result Inspection (Underling)

Tool built around a single goal: Make screenshot workflows fast

- Inspect screenshots quickly

- Update screenshots in bulk

- Ease screenshot comparison

- Once it loads, everything is in-memory, 60fps

- Power users can rely on keyboard shortcuts for almost everything

Rendering Engine architecture conference 2024

Underling usage

Rendering Engine architecture conference 2024

Is it worth it?

Rendering Engine architecture conference 2024

Is it worth it?

Yes! Confidence aids everything

- Tons of regressions caught before they impact anyone

- They help in debugging. Ex: White furnace test on strand hair
helped us diagnose wrong sky values

Rendering Engine architecture conference 2024

Next steps
Because we’re far from done

Rendering Engine architecture conference 2024

Next steps: Comparing images

Some teams don’t care about single pixels

“We just want to know the object is more or less there”

Experimenting with Resolution Scaling right now
“Render at high res, then downscale”

Rendering Engine architecture conference 2024

Addendum
Infrastructure

- “Managed farm”: GPU HW, OS version, driver version, console SDKs tightly controlled
- Coordinated upgrades across branches

Next steps: running engine tests in game branches

- Ongoing work!
- Test data within the engine code

Rendering Engine architecture conference 2024

Future work: Comparing branches/platforms

- No good workflow to compare screenshots of different platforms/branches

- Workflow to accept “similar enough” screenshots on all platforms (but not all branches!!)

Rendering Engine architecture conference 2024

Conclusion

Testing for us always slightly to very painful

But you can make a difference
Δquality
Δengineer workflows

Δteam velocity

Rendering Engine architecture conference 2024

Thanks!
Thanks to everyone that has cared about our test infrastructure over the years!

Mick Beaver
Emma Fagerholm
Simon Taylor
Kyle Hayward
Jonathan Kidane
Homan Lam
Juan Parra
Alex Fry
Leszek Godlewski
Dan Elksnitis
Dave Cope
Johan Berg

Timo Qvist
Matt Fogarty
Sebastian Tafuri
Alex Matache
Bogdan Ionut Rotariu
Bryan Sefcik
Ben May
Bart Meijer
Gede Suparsa
Lydia Fang
Emily Benitez
Henrik “honk” Karlsson
Johnny Pak

Vani Choubey
Tayler Hopko
Hao Wang
Roman Gusev
Peter Lu
Joe Tomkins
Miguel Rodriguez
Antonio Campos Domingo
Pontus Hamberg
Henrik Janhagen
Mischa Alff
Isadora Persson

Albert Cervin
Sakarias Johansson
Joakim “JoCCo” Lindqvist
Igor Khlepitko
Liza Shulyayeva
Caroline Striessnig
Jake Shadle

	Slide 1: Testing Rendering Code at Frostbite
	Slide 2: Note: These slides don’t match the actual presentation exactly. I did a lot of video editing after the fact, so take these slides as a rough approximation
	Slide 3: Who am I?
	Slide 4: About this talk
	Slide 5: Required reading
	Slide 6: Required reading
	Slide 7: Required reading
	Slide 8: What is Frostbite
	Slide 9: What is Frostbite
	Slide 10: Frostbite’s mission
	Slide 11: The kind of games we make
	Slide 12: Stability is one of our top concerns
	Slide 13: Test infrastructure at Frostbite
	Slide 14: Current infrastructure
	Slide 15: Current infrastructure
	Slide 16: Testing Dashboard in 2016
	Slide 17: Testing Dashboard in 2024
	Slide 18: Test types
	Slide 19: Automated tests at Frostbite
	Slide 20: Automated tests at Frostbite
	Slide 21: Automated tests at Frostbite
	Slide 22: Performance Tests
	Slide 23: Shader Unit Tests
	Slide 24: Rendering “Unit” Tests
	Slide 25: Screenshot tests
	Slide 26: Comparing images with thresholds
	Slide 27: Comparing images with thresholds
	Slide 28: Comparing images
	Slide 29: Comparing images
	Slide 30: “Just make your test HW-independent!”
	Slide 31: RenderTests Screenshot Tests
	Slide 32: The screenshot flame wars
	Slide 33: Screenshot Wars
	Slide 34: Screenshot Wars
	Slide 35: Screenshot Wars
	Slide 36: The ultimate reason
	Slide 37: High-quality screenshot tests
	Slide 38: Rendering Test Quality
	Slide 39: High-quality screenshot tests
	Slide 40: Speed
	Slide 41: How to get to this point
	Slide 42: Pain-based development
	Slide 43: How to improve infrastructure
	Slide 44: These started as grassroots projects
	Slide 45: Pain-based development
	Slide 46: Current infrastructure
	Slide 47: Test Result Inspection Tool
	Slide 48: Test Result Inspection (Underling)
	Slide 49: Underling usage
	Slide 50: Is it worth it?
	Slide 51: Is it worth it?
	Slide 52: Next steps
	Slide 53: Next steps: Comparing images
	Slide 54: Addendum
	Slide 55: Future work: Comparing branches/platforms
	Slide 58: Conclusion
	Slide 59: Thanks!

