Santa Monica Studio




Maya as Editor

The game development approach of
Santa Monica Studio

Stephen McAulkey, Technical Director

Malt Pettineo, Lead Rendering Programmer
-

Santa
Monica
Studio




The Spedakers

Stephen McAuley
Technical Director

Joinedin August 2020

Matt Pettineo
Lead Rendering Programmer

Joinedin April 2023
-

Santa
Monica
Studio

Both Matt and | are fairly recent to the studio, which started back in 1999. So in talking about
the engine and the choices made, we weren’t there at the time. However, we both have
worked at studios that use Maya as an editor before, and we can observe how our use of
Maya at SMS affects the studio culture. So although some of this talk is guess work and
assumptions about where we came from, there hopefully is still a lot of good knowledge here



The Studio

Playstation.2 PlayStation.2 2 PlayStation.

i, Vi
2001 2005 2008 2010 2013

Kinetica GodofWar Godof Warll Godof Warll  God of War: God of War:
Ascension Ragnardk

Santa
Monica
Studio

Founded in 1999 and primarily known for the God of War franchise, although we started off
with a game called Kinetica, which | didn’t even know until | started writing this talk. We're
most recently known for the God of War reboot in 2018, and its follow up, our most recent
release, God of War: Ragnarok in 2022.



We use Mayaasan

Editor...




Why use Maya as an Editor?

® Content creators are familiar with the tool.
® No need to write your own editor.
® Extendable.

® Fasy to add your own Uland tooling.

® No need to maintain a PC version of the game.

® Particulorly relevant historically for first- or second-party studios.

Santa
Monica
Studio

So how did this come about?



How is Mayaused?

® Allgame content is assembled in Maya.,
® Meshes
® Animations

® Game objects

® Colision, trigger volumes, scripts, cameras etc.

Santa
Monica
Studio

Other editors can of course be used. Either DCCs like Photoshop or Houdini; or in-house
tools like our Gl baking tool or visual script editor. But fundamentally all data they produce
goes through Maya.



How do youlive Edit? (6%

® The game is always run on console.
® Maya has a “Livelink” connection to the game on console.

® This provides real-time updates in game as you edit in
Maya.

Q Mid_For200_Vis.mb - Autodesk MAYA 2023.3.0-22.0.PFIX: Z:\int9\GameArt\Levels\Midgard\Forest\
File Edit Create Select Modify Display Windows Mesh Edit Mesh MeshTools Mesh

J SMS Tools Modeling v | LiveLink Track Maya Cam Track Game Cam

Santa
Monica
Studio

We will cover how this works later in the presentation.



How does this Affect Game Development? .

® The engine is built around Maya concepts and hierarchy.
® Content creators are given control.

® “What you can do in Maya, you can do in game” *

® *\With exceptions

® More focus on build time systems and tools, as opposed to
run time systems and bespoke technical features.

®co

® No terrain system -

T Santa
® Everythingismesh Monica

Studio

This use of Maya has heavily influenced the studio — both technically, and culturally.

One example is how we don’t have a terrain system — this of course doesn’t map into Maya.
Instead everything is just mesh, because that’s what Maya supports and expects.

We're going to dig into more influences on the studio later in the presentation.



Base Conceﬁts

How the game is built in Maya

Let’s begin by talking about some base engine concepts, that will help ground us for the rest
of the presentation.



Game Architecture

® Our game s split into wads.

® These are the fundomental building blocks of the game that are buiilt
offline and loaded/unloaded/streamed by the game.

® Foch wad has its own specified memory budget.
® Exomples:

® Asection of alevelis awad.

® Krotosis awad.

® Atreusisawad.
-

Santa
Monica
Studio




Game Architecture

® Fach wad has a definition file that states which Maya binary
files to load/build.

4P Mid_For200_House.waddef
{
“wadname” : d_For200_House",
“description "DESCRIPTION",
118 * 1024 * 1024,

“contents”: [{
weak™,
Z:/int9/GameArt/Tweaks/WAD_Mid_For200 House.dcs"

:/int9/GameArt/Levels/Midgard/Forest/Mid_For200@_House/Mid_For20@_ House.mb™

evelScripting”,

z:\\int9\\gameart\\visualscripts\\levels\\midgard\\forest\\mid_for200_house -
Santa
Monica
Studio




Game Architecture

® These are typically “parent” mb files which reference:

® A" Vismb” file, for visual/art content,
® A" Colmb” file, for colision data.
® A" Nav.mb”file, for navmesh datao.

® Andmore...

Outliner
Display Show Help

] md

Santa
Monica
Studio




Optimizing Game Objects

® Maya scenes are then long hierarchies of ref nodes:

L
Santa
Monica
Studio




Ref Nodes

® Aref nodeis where a Maya file is referenced into another.

® Our gome is fundamentally built from long hierarchies of ref
nodes.

® Eachref node is built separately and stitched together using
a tool called LinkWad.

® | inkWad collects dll built Maya files that make up a wad ond links them
together.

Santa
Monica
Studio




Plugin Node Types and Data

® \We have over 100 custom Maya plugin nodes

® Entities, sounds, lights, wind, camera targets, colision, etc.

® Attributes on the node used to store their set of data

® Maya's native Attribute Editor provides a user interface

® Nodes can have many custom behaviors, as well as
custom visualizations

Santa
Monica
Studio

As we said at the start, Maya is very customizable. Our Maya scenes aren’t just full of art.



Example Plugin Node: SMLight

Outliner
Display

w  Shading
;MR
Verts:

Lighting

SmlightShape
g Foes
Smlight: s e Presets

Show Hide

¥ smlight

vBoth
ory Default
World

Notes: SmLightShape

Santa
Monica
Studio




DataCompiler Nodes

® Many plugin nodes use a generic “DataCompiler” path
® Custom DDL used to describe node properties
® DataCompiler generates C++ code for:

® Setting up attributes on the Maya plugin node

® Runtime data class used by the game

® Simplified setup for nodes that just need to store data

Santa
Monica
Studio




En%ine Architecture

aya scene hierarchy and
our engine

Now that we have our grounding about how the game is built in Maya, let’s delve deeper into
our engine architecture, and how it’s influenced by Maya scene hierarchy.



Engine Architecture

® We use an equivalent of an entity component system®:
® Game objects are entities
® Gome objects have hierarchies (i.e. they have aparent and children)
® Clients are components

® Servers manage lists of clients

® je. soallight clients are updated by the same server

* Warning: This is a simplification. The full system is outside the scope of this talk. :Mt"o"ﬁ&q
uaio

First, let’s explain a little about our architecture.

Having all components of the same type, such as lights, updated by the same server is a good
data-oriented design optimization.

This architecture actually goes all the way back to 1999 and the studio’s founding!

Some programmers on our team are probably screaming at me right now, saying it's much
more complicated than this. It’s true. There are cases where servers are entities and clients
are also entities, for example. But this whole system is outside the scope of the talk.



Engine Architecture

® Some example clients (relevant to rendering):
® |ights
® Static meshes
® Models
® FX blenders:
® Cubemaopregion
® |ighting environment

® Color correction
-

Santa
Monica
Studio

Having all components of the same type, such as lights, updated by the same server is a good
data-oriented design optimization.

This architecture actually goes all the way back to 1999 and the studio’s founding!
Some programmers on our team are probably screaming at me right now, saying it's much

more complicated than this. It’s true. There are cases where servers are entities and clients
are also entities, for example. But this whole system is outside the scope of the talk.



The Layout of a Maya Scene

® | et's use triggerVolMultiRefnode.mb as an example scene:

Outline

-
Santa
Monica
Studio

Let’s now move onto Maya.

This is one of our visual tests, and it’s a good simple example of a scene hierarchy.



The Layout of a Maya Scene

® \We have two ref nodes (triggerVolumeTest_source.mb):

Outliner

eDefaultLightingEnv

L
Santa
Monica
Studio




The Layout of a Maya Scene

® \We have two ref nodes (triggerVolumeTest_source.mb):

Outline

-
Santa
Monica
Studio

They actually happen to reference the same Maya file



The Layout of a Maya Scene

® A camera:

Outliner

-
Santa
Monica
Studio




The Layout of a Maya Scene

® | ighting settings: i oot

Show Hide

Qutliner
Disp

Santa
Gi Occlusion Amount MOnJCQ
: Studio




The Layout of a Maya Scene

® Let’s openthe triggerVolumeTest ref node. | & ussevoineres

—e B:BtriggerVolumeTestShape
{¥] «$» cube
M testCam

cubel

=] aF groupl
‘,':'tnggepntuteShape-:
= J group2

| f";trlggepnttheShapeE‘

= f-trlggepnttheShapeE -
! f'tr|ggepr1tL|teSlwap53 Santa

L -@-triaa Monica
| ' triggepntLiteShape1 Studio




The Layout of a Maya Scene

® Let’s openthe triggerVolumeTest ref node. | & ussevoineres

—e B:BtriggerVolumeTestShape
{¥] «$» cube
M testCam

cubel

=] aF groupl
‘,':'tnggepntuteShape-:
= J group2

| f";trlggepnttheShapeE‘

= f-trlggepnttheShapeE -
! f'tr|ggepr1tL|teSlwap53 Santa

L -@-triaa Monica
| ' triggepntLiteShape1 Studio




The Layout of a Maya Scene

® Let’s openthe triggerVolumeTest ref node. | & ussevoineres

—e B:BtriggerVolumeTestShape
{¥] «$» cube
M testCam

cubel

=] aF groupl
‘,':'tnggepntuteShape-:
= J group2

| f";trlggepnttheShapeE‘

= f-trlggepnttheShapeE -
! f'tr|ggepr1tL|teSlwap53 Santa

L -@-triaa Monica
| ' triggepntLiteShape1 Studio




The Layout of a Maya Scene

® | et's open the triggerVolumeTest ref node. | & usservemeres

[—* B-BtriggerVolumeTestShape
{f] «3» cube
M testCam
cubel
(¥ B:8 cube2
[t] «g» TVON
«%s TVOFF
] 2 group1
] ‘:";tr|-ggepntL|teShape-'
] a7 group2

| f";trlggepnttheShapeE

) ~,"_~trlggepnttheShapeS

<%* pPlanel

f-trlggepnttheShapeE -
f‘tr|g‘gepr1tL|teSlwape3 Santa

& -@- trigg ha Monica
] ’ triggepntLiteShape1 Studio




The Layout of a Maya Scene

® Let’s openthe triggerVolumeTest ref node. | & ussevoineres

—e B:BtriggerVolumeTestShape
{¥] «$» cube
M testCam

cubel

=] aF groupl
‘,':'tnggepntuteShape-:
= J group2

| f";trlggepnttheShapeE‘

= f-trlggepnttheShapeE -
! f'tr|ggepr1tL|teSlwap53 Santa

L -@-triaa Monica
| ' triggepntLiteShape1 Studio




The Layout of a Maya Scene

® Let’s openthe triggerVolumeTest ref node. | & ussevoineres

—e B:BtriggerVolumeTestShape
{¥] «$» cube
M testCam

cubel

=] aF groupl
‘,':'tnggepntuteShape-:
= J group2

| f";trlggepnttheShapeE‘

= f-trlggepnttheShapeE -
! f'tr|ggepr1tL|teSlwap53 Santa

L -@-triaa Monica
| ' triggepntLiteShape1 Studio




The Layout of a Game Scene

® \What creates a new game object?

® \What becomes a client?

B oF triggerVolumeTest

—e B:BtriggerVolumeTestShape
{¥] «$» cube
Wd testCam
cubel

(] B:8 cube2

|2 3= TVOFF
—E] o group1
L@ f':'tr|-ggepntL|teShape-:
£ o group?2
] f";trlqgepnttheShapeE‘
=] a group3
) f':'trlggepnttheShapeS
] «3* pPlanel
triggepntLiteShape2
triggepntliteShape3

,f-trlggepnttheSh&pﬂ

Santa
Monica
Studio




What Becomes aNew Game Object?

]. Root transforms in the Maya scene

2. Instance ref node transforms

® | e. the parent transform of the actual ref node

3. Transforms with the “new game
object” Maya attribute set

: - Santa
f triggepntliteShapel MOhjCCl
Studio




Examplel .

' ”CUbe” ;@ trinnarSojumeTest
® |nthe root of triggerVolumeTest ref node .mb.
® Creates anew game object “gocube”,

® Creates astatic mesh client ottached to the
game object.

pntliteShaped

pntliteShapet

Santa
Monica
Studio

“cube” has a transform at the root of the triggerVolumeTest ref node.



Example 2

® “triggepntLiteShope2”

® |nthe root of triggerVolumeTest ref node .mb.

® Creates anew game object
“gotriggepntLiteShope?”.

® Creates alight client attached to the game
object.

 E:BtriggerVolumeTest

pntliteShaped

pntliteShapet

Santa
Monica
Studio




Example 3

® “triggepntLiteShape4”
® Under the groupl transform.
® Does anew game object.

® Creates alight client attached to the game
object “gogroupl”

® groupl satransform at the root of the Maya scene.

] B-EtriggerVolumeTest

pntliteShaped

pntliteShapet

Santa
Monica
Studio




Explicit Game Objects

® You can dlso flag objects to be explicit
game objects.

® ¢ g.if youneedto refer to themin script.

® “Keepjoint”is another flag:

® The transform for this part of the object is not
baked.

® Adds possibility to onimate.

Santa
Monica
Studio




Example 4

' ”Cube2” B:EtriggerVolumeTest
® |nstance ref node transform.

® Creates anew game object “gocube?”,

[} ”CUbe”

® Root transformin the cube? ref node Maya el
scene. ;

pntliteShapet

® Creates anew game object “gocube”,

Santa
Monica
Studio

As instanced ref nodes are built separately, we don’t know about the surroundings when
building. So “cube” is in the root of the cube2 ref node scene, and when cube? is built, we
create a new game object for “cube”. When cube2 is instanced into triggerVolumeTest, we
also create a new game object for cube2, so we have a ref node hierarchy.



Example 4

® Game object hierarchy:

® Joroot
® gotriggervolumetest

® gocube2

® gocube
LiteShaped

pntliteShapet

pntliteShapes

Santa
Monica
Studio

As instanced ref nodes are built separately, we don’t know about the surroundings when
building. So “cube” is in the root of the cube2 ref node scene, and when cube? is built, we
create a new game object for “cube”. When cube2 is instanced into triggerVolumeTest, we
also create a new game object for cube2, so we have a ref node hierarchy.



Optimizing Game Objects

® Recallthat artists build long hierarchies of ref nodes:

Santa
Monica
Studio




Optimizing Game Objects

® This means we create significant
amounts of game objects.

® o g wehave gome objects for:

® cube, cubel, cube2, cube?/cube, pPlonel
® None of these are animated or scripted.

® These could allbe one mesh.

So if we go back to our simple example...

epntliteShaped
itLiteShapet

epntliteShapes

Santa
Monica
Studio




Static Mesh Optimization

® Static mesh optimization introduced in God of War 2018.

® Performedin “LinkWad”,

® \Where dllthe Maya files that constitute a wad are stitched together.

® Pulls all suitable mesh instances out of the hierarchy.
® Gaothersthem into new root-level objects.

® Transforms and other inherited properties bakedin.
L

® Original game objects are stripped out of the wads. :Mt‘i%{féa




Static Mesh Optimization

® Anexample from God of War 2018:
® Game objects: 1,800,000

® Directly animated gome objects: 185,000
® Transforms: 85000
® \isioiity: 100,000

® |deally only need to keep directly animated game objects:

® However, static mesh optimization only applies to meshes.

® Nearly a 90% reduction in the number of game objects. -

Santa
Monica
Studio

We had |.8 million game objects, but only 185,000 were directly animated (just under half
had their transform animated, just over half had their visibility animated). We only need to
keep directly animated game objects in principle, but as the static mesh optimization applies

only to meshes, some non-directly animated game objects for particles, collision etc. would
remain.

However, in total, that meant we kept just 185,000 game objects out of an initial 1.8 million,
which is nearly a 90% reduction!



LiveLink

ref node hierarchy... but what if we need it?

WY testCam

® We've just flattened and merged part of our DFT

® | ivelink:

® Our tool that sends live updates from Mayato the
game.

® |fImove cube2, how doItellthe gameto
update its transform?

® \We've merged and flattenediit.
-

® \Ve keep the hierarchy as “LiveLink” only. - toaepmitesnape M
Udi

LiveLink is a really big part of our engine, so we need to talk some more about it...



Live Edltlng
How Livelink connects Maya
and the console

I’'m now going to talk a bit how we do live editing at SMS as part of our core workflows, as
well as the underlying technology that we use for implementing live editing.



LiveLink (6%

® Generic framework for passing dota between tools and
the game

® “Edit the game while it's running”

® Allows editing tools to run on the PC while the game runs on
aconsole

® See final visual results without a PC version of the game or
renderer

Santa
Monica
Studio

“LiveLink” is the name we use internally at SMS to refer to our framework for passing data
between our various PC-based tools as well as the game running on the console. The primary
goal of this framework is to essentially allow tools to live edit aspects of the game while it’s
running on the console, which our tools generally do by sending messages and data across
the network. This ability to live edit is extremely important for development as we do not
have a version of the game or engine that runs on PC, which means the game must be
running on the console in order to actually see the final rendering, animation, or gameplay
results. While we do have some limited ability to preview assets directly on the PC (which Il
talk about later), in general we rely very heavily on LiveLink workflows to be get feedback on
changes as we’re making them.



Livelink Architecture

Material Editor
Script Editor

_ Redis Transport

Maya /
Debugging and

Script Editor Logging

VES Toal -

Santa
Monica
Studio

Before | go over the use cases for LiveLink, | wanted to give a brief overview of how LiveLink
works under the hood. To start, we have a diagram here showing the general connection and
data flow for LiveLink. On the left we have a group of LiveLink “clients”, which are each an
application that can make a connection to the central services so that they can ultimately
send messages to LiveLink servers. These clients are typically custom in-house tools that run
on the PC, but can also include third-party tools such as Maya where we integrate LiveLink
via a plugin.

The middle shows our persistent services, which we refer to as “sms-services” internally.
These services area always running in the background on the developer’s host PC. The Redis
Transport service is the important one here, but we also have some other services available
for other use cases. We also have a service that provides debugging and logging for all
LiveLink traffic, which can be useful for inspecting what a tool is doing or diagnosing a
problem.

Finally we have our LiveLink servers on the right, which are apps that receive Livelink
messages and can respond to them. The main server is the game, which is the recipient of the
majority of our LiveLink messages. However other tools such as the material editor or
material baking system can also act as servers to allow the game to send its own messages to
these tools.



Livelink Architecture

® The game and other servers expose abroad “API”
® Knowninternally as “SMAPI”

® Fach APIhas a unique message and handler

® Protocol Buffers for arbitrary message payload
® APl pushes messages to pub/sub channels on local Redis server
® Message receiver pulls the message data from Redis

® Could be the game running on a console, or a process on the host PC

® Messages can also return RPC-style results through the AP :Mf%gq

Under the hood, LiveLink works with a set of wrapper functions that’s known internally as
“SMAPI”. These basically server as a broad API that clients can use to communicate with the
game to send it messages and data, with the calling code basically calling regular C++ or C#
functions. Each API call has a unique message that gets sent, which can include an arbitrary
payload. We use Protocol Buffers to automatically generate the message payload structs from
the protobuf DDL, which also handles serialization for us. The way that communication
happens is that the LiveLink system opens a network connection to the Redis server that’s
running locally on the host PC, and uses Redis pub/sub channels to publish the messages to a
particular channel. These channels roughly map to a particular LiveLink server, which allows
those servers to pull the messages intended for it from Redis. Since it’s happening over the
network this allows servers to be running on a console, or it could just be a process on the
host PC. Messages also allow replying with a result, which essentially allows the API to act as
remote procedure calls.



-
OAdtie Node Urd @, ANaA properte
333333
E33333 2
3333
> 2333
z3
$333
2
<] eSS
> 2
-4 -

) <

Let’s now look at some of the clients that make use of LiveLink. To start, we have Maya
which connects to the game to automatically propagate edits to the scene in real time. I'll go
into some of the details in a bit, but here in the video you can see Maya on the left and the
game running on the right. As | re-position the camera in Maya or move the nodes around,
the changes are immediately reflected in the running game. We also support a limited ability
to duplicate existing meshes and nodes, which you can see me do towards the end. In

practice there are all kinds of things you can do through LinkLink in Maya, but I'll talk a bit
more about this later.



Livelink Clients

® \/isual Script Editor

® Script breakpoints and live edit

® See our GDC 2023 presentation

Santa
Monica
Studio

Here we have our visual script editor, which is a newer tool and system that was added for
God Of War: Ragnarok to replace the previous lua-based scripting system. The script editor
has debugging functionality that works by connecting to the game over LiveLink and
communicating state. The editor can set breakpoints to know when a particular node has
been executed, and can also propagate changes to the game without having to restart.

For more information about the visual scripting system, you can check out our presentation
from GDC 2023: https://www.gdcvault.com/play/1028787/-God-of-VWar-Ragnark



Livelink Clients

® Automated performance coptures

® Gather CPU and GPU performance stats from the running gome

Santa
Monica
Studio

As an example of a more unusual client, we also our automatic performance capture and
telemetry framework. This system utilizes LiveLink to gather performance statistics from the
game itself as it’s being run by developers, which can then be visualized and queried through a
web interface. The data can be used to easily see which areas are over-budget and how
they’re trending over time. The tools also support generating heat maps which can also be
really useful for locating problematic content.



Livelink Clients

® \/FSTool

® “\/irtual File System”

® Tweaok variobles/settings from host PC

Santa
Monica
Studio

The “Virtual File System” is a core piece of engine technology that has existed since the
studio’s earliest games. While it used to be used more broadly for core game data, these days
it's used for exposing development-only “tweak’” variables. VFSTool is an internal tool that
runs on the host machine and exposes a simple Ul for interacting with these VFS tweaks. It’s
similar to an ImGui debug menu, except it predates ImGui does not need to run on the
console itself. This tool uses LiveLink to query which the VFS directory structure, the type of
the tweak, as well as its current value. It also obviously allows changing the value, and
communicates when a tweak has been changed from its default value.



Livelink Clients

® Material Editor

® | ive update material
properties and textures

® More on this later!

Santa
Monica
Studio

Mesa, our internal material editor utilizes LiveLink extensively to allow live editing and
preview of materials in the game. This includes modifying bool/float/color properties as well
as assigning new textures. I'll be talking more about Mesa in the next section.



Livelink In Maya

® | ivelink functionality provided by a native plugin dl

® Register node add/removal calloacks

® Update the game on removal or rename

® Register AttributeChanged callback for all nodes
® Track attribute modification, add, removal, renome
® Update the gameObject/client with new attribute status using a GUID

® Generic poth DataCompiler nodes that maps attribute -> memory
-

Santa
Monica
Studio

Let’s now return to Maya to talk a bit about how live editing is implemented. Maya is perhaps
our most important LiveLink client, since it’s the main interface for editing the game world.
Since Maya is a closed-source third-party tool, we utilize Maya’s plugin architecture to extend
it with our LiveLink functionality. This plugin works by registering node add and removal
callbacks using the Maya API, which allows the plugin to internally keep track of every node in
the scene without having to constantly poll and traverse the DAG. Once the plugin is aware
of a node, it can then register a callback to have Maya notify it whenever an attribute has
been modified, added, removed, or renamed. These attributes encompass built-in maya
properties like translation/rotation/scale, as well as custom attributes that our plugins
register to represent data that is only meaningful to our engine. Based on the what changed,
the plugin can then extract the relevant information from the node + attribute and package it
up in a message to send to the game. This typically includes the node GUID as well as the
attribute name and value at minimum.

On the game side the gameObject and client ends up getting a virtual method called so it can
handle the AttributeChanged message. Some clients have special-case handling, but in many
cases we can use a generic path for DataComepiler nodes that simply copies the new attribute
value to a location in memory.



Livelink In Maya

® Track Maya animation timeline status

® Game staysin sync when playing animations or scrubbing the timeline
® Can diso track edits to anim curves and replicate in-game

® Bi-directional camera link
® Track Maya Cam — game is synced to Maya camera

® Track Game Com — Maya is synced to in-game camera

® Too many tolist!
-

Santa
Monica
Studio

Our LiveLink plugin does more than just track and replicate node attributes. The full list is
too large for this presentation, but let me provide a few other examples. Another important
LiveLink functionality is syncing the game’s animation timeline with Maya’s. This allows
controlling the animation state directly from Maya, including scrubbing the timeline. In
addition to the animation timeline, the plugin can also track edits to animation curves and
notify the game so that the changes can be replicated. Finally, we also have a bi-directional
camera link between Maya and the game. This allows the game camera to follow Maya’s
camera, which is useful for live edit scenarios. Or alternatively Maya’s camera can be synced
to the game’s camera, which is convenient to locate where the player is within a larger area.



Mesa Material Editor

How we create and edit
makterials

Next, | would like to talk about Mesa, which is our in-house material editor.



Mesa Material Editor

® Second generation internal material editor
® Almost all materials are made with Mesa
® \Nith some exceptions

® Exposes afixed set of materiol parameters and features

® No shader graphs! Only hand-written ubershaders.

Santa
Monica
Studio

Mesa is actually our second-generation material editor, and was written during development
God Of War: Ragnarok to replace the material editor that had been used for previous titles.
Currently almost all materials are created and edited with Mesa, with the exception of a few
legacy use cases that have not been replaced yet.

From a high-level, one thing that’s important to note about Mesa is that it exposes a fixed set
of controls and parameters for the material that’s directly tied to a hand-written
ubershaders. In other words, we do not expose a visual shader graph that allows technical
artists design their own shader logic that determines the final shading parameters for our
core BRDF.



Mesa Material Model

® Materials use a “Principled” shading model

® Disney Diffuse

® GGX Specular (sotropic and Anisotropic)

® Subsurface Scattering

® Specular Transmission

® Retroreflection

® Sparkles/Glints

® |rridescence —

o . Santa
Hair Monica
Studio

The core shading model used by Mesa materials is a principled shading model, similar to what
you might see in OpenPBR. What this means is that the shading model has several “features”
that correspond to different BxDF terms for diffuse and specular, which can each be enabled
and controlled independently with well-defined interactions. These features include Disney
Diffuse and isotropic GGX specular as a baseline. But optionally we also support anisotropic
GGX, subsurface scattering, specular transmission, retroreflection, sparkles/glints, and
iridescence. We also have a hair BxDF based on the Marschner model, which is mostly
mutually-exclusive with the other shading features.



Mesa Material Layers

® Organized as a “stack”
® Similor to Photoshop or Substonce Painter

® Blends parameters together to get the final
shading parameters

® | ayers can also be “referenced” to
allow sharing alayer amnong several

material assets
-

Santa
Monica
Studio

Internally, Mesa materials are built around a layer stack. This stack is similar to what you
would see in Photoshop or Substance Painter, where the stack defines an implied order of
how the layers are blended together. The result of blending these layers is ultimately the
surface and shading parameters that feed into our principled shading model. This is effectively
“horizontal” layering, since we’re just blending parameters. VWe don’t support any kind of
arbitrary “vertical” layering, which would require evaluating multiple interactions as light
scatters into and out of the physical layers.

In many cases a single material is effectively a meta-material formed by combining many
individual sub-materials together through layers. For example stone might be one layer, with
moss being a secondary layer blended on top. To facilitate this, we support “layer
referencing”. This allows artists to create a library of base materials, which can then be used
as individual layers. This avoids having to replicate material properties for each potential layer
combination.



Mesa Material Layers

® A uniform set of channels is exposed
per-layer

® Secondary layers opt-in to channels they
want to modify

® Alayer UV traonsformis shared among
allchannels

® Some channels have an optional UV override —

Santa
Monica
Studio

Each layer exposes a uniform set of “channels. Each channel is typically a combination of a
texture map with a set of parameters that combine with that texture. The channels then map
to some major component of our shading model. For example we have base color, normal,
emissive, gloss, AO, scattering distance, and iridescence as separate channels.

For multi-layer materials, the secondary layers are setup so that each channel must “opt in”
to participating in the blend. This allows layers to only override a subset of the channels
rather than affecting all of them.

Each layer also has a set of UV transform properties that affect all channels in the layer. This
includes simple operations like scale/rotation/translation/scroll, as well as more complex
transformations such as parallax mapping.



MesaLayer Flattening (%]

® | ayers can be “live” or “flottened”

® Fottened layers go through a custom pipeline to generate
a combined texture at build time

® Uses the saome layer blending logic as live layers

® Avoids having to go to an external tool

® But adds considerable complexity and maintenance cost

® Over-usage of flattening con bloat texture memory
footprint

Santa
Monica
Studio

In Mesa, each layer can be either “live” or “flattened”. For live layers we evaluate the layer at
runtime in the pixel shader, and then blend the results. For flattened layers we flatten that
portion of the stack offline to produce a set of pre-blended textures. This happens during a
step on our content build pipeline, and ultimately uses the same logic as our live layer
blending so that the expected results are produced. The advantage of this approach is that it’s
fully built into our material editor and build pipeline, and avoids the need to have to go into
an external tool such as Substance Designer to produce textures (although | should point out
that we still use Substance Designer quite a bit internally). However it is also a significant
trade-off, since flattening adds considerable complexity and maintenance cost for the
rendering team. Another thing to point out is that over-usage of flattening can also cause
issues for texture memory and disk footprint. Flattening is often viewed as “free” compared
to live layers since the results are precomputed, but that can sometimes lead to flattening
being used for relatively simple cases. For example, there might be N variations of a material
where the base color is just tinted differently.



Material Shader Pipeline

® Foch material asset generates some shader code
® Structs containing hard-coded parameter values

® Texture sampling and final UV calculation

® Hond-written ubershaders include the generated code
® Generic framework to blend layers to get final parometers

® Different shaders used for opaque, transparent, refraction, etc.

® The build pipeline compiles N sets of shaders for each
mMaterial D

Santa
Monica
Studio

In terms of how materials map to actual compiled shaders, each material generates a block of
shader code that corresponds to the exact options and parameters configured in the
material. The bulk of this generated code takes the form of structs that contain hard-coded
parameter values for things like tint colors and flags. The remainder is mostly comprised of
code to sample the assigned textures for a particular channel. This part is also responsible for
applying any requested UV transformations before sampling the texture.

This generated code then ends up being included by our hand-written ubershaders that form
the overall structure of the shaders. We have a generic set of functions and utilities that can
use the generated code to calculate the layer alpha, evaluate the layer channels and then
blend the channels based on the alpha value. In practice we have a set of these ubershaders
for different purposes, for example for rendering opaques to a G-Buffer or rendering
transparents with forward lighting.

Ultimately our build pipeline ends up generating and compiling N sets of shaders for each
material, where each set has a vertex shader + pixel shader at minimum. Most of these sets
are tied to a particular variant that might be requested by the mesh using the material, for
example skinning vs. non-skinned. However in some cases we have special rendering paths
for different material types that result in multiple passes, which can result in additional shader
sets being compiled.



Mesa Material Preview

® Mesa runs bespoke DX shaders to
display areal-time preview

® |ncludes some of the actualin-game
shader code for lighting/BRDF
evaluation

® Uses a simplified lighting environment

® Single environment probe + directional light

® Currently requires shared shader code , :
to compile in DXTI/FXC . Monia

Studio

Mesa does also feature a real-time live preview that’s rendered on the host PC. This preview
image is generated using a set of bespoke DirectX| | shaders, which include some of the
game’s actual actual shader code to perform the same BRDF evaluation. However this is
ultimately done in a very simplified forward lighting environment, since the Mesa codebase
does not have nearly any of the same rendering features that the game has. Instead Mesa just
uses a simple lighting environment with a pre-convolved HDR lighting probe and an analytical
directional light. For many shading features this is sufficient to get a decent approximation of
what the material will look like in-game. But some of the more advanced ones, like subsurface
scattering, aren’t replicated because they would require additional passes.

Another thing to point out about this approach is that it requires a subset of our shader code
to be directly included in the DXI | shaders, which means they must compile under FXC’s

very limited feature set.



Maya Material Preview

® |nject a custom DXIl shader for meshes with SMS materials
® Uses MPxShaderOverride and Viewport 2.0

® Uses abespoke ubershader that includes the generated
material shader code in order to blend layers

® Evaluates shading with Maya's lighting environment

® Matches the game material parameters exactly, but not
the lighting

® This also requires snared shader code to compile in FXC ®

As a quick aside, | also want to briefly cover how our materials are represented in Maya. For
Maya we have an additional plugin that interacts with Viewport 2.0 to override the shader
and textures used when drawing a mesh. This allows us to provide our own shaders that can
be used which can approximate the look of the mesh in the actual game.

The way we do this is by having an additional base ubershader that includes the generated
material shader code, just like our in-game shaders. However in this case the shader uses
Maya’s mesh and lighting inputs to calculate the final surface parameters, and then compute
the final lighting from those parameters. What this means is that the shading parameters
inside of the shader actually match the game very closely, but the actual lighting environment
is vastly different. And just like the Mesa preview, we lack external passes such as subsurface
scattering or decals which causes the appearance to diverge even further.

It’s also worth pointing out that this is yet another place that requires a subset of shader
code to compile under DX | and FXC, which severely limits the shader language features
that we can use.

Santa
Monica
Studio




Mesallivelink

® Allows seeing the final live material appearance with the
realin-game lighting conditions

® Crucial for art and material workflows

® Mesa tracks changes as they happen, sends Livelink
mMessages to the game to update it

® Materials switch to “half-baked” shaders with parometers
storedin constant buffers so that they can be updated

® Mesacompiles these on-the-fly as-needed -
Santa
Monica
Studio

Returning back to Mesa, | want to finish by talking about how LiveLink works to implement
live editing within the game. This workflow is absolutely critical for authoring materials, since
it's the best way to see how a material actually responds with the game’s full lighting
environment and features. The way it work is that Mesa internally tracks changes to the
underlying material document as they happen. As changes occur, they are sent to a thread
which performs necessary processing to update the game with the detected changes. When
the first change is detected, the first step is usually is to on-the-fly compile a “half-baked”
variant of the shaders that the game will switch to. This development-only variant replaces
hard-coded parameters with constant buffer values, which allows those values to be live
updated by the game. Mesa can then form LiveLink messages when parameters are changed in
the Ul, and the game responds to them by updating the constant buffer.



MesaLiveLink - Shaders (6%

® Some material options still cause a re-compilewhen using
half-baked shaders

® Mainly which textures/channels are sampled

® Also options that affect the vertex shader inputs/outputs

® Mesa will track these and re-compile shaders as necessary,
then update the game

® Also works as a convenient live-reloading path for

programmers iterating on material shader code -

Santa
Monica
Studio

Some material changes can’t be represented with a simple constant buffer update, and will
cause Mesa to re-compile the half-baked shader and send it over to the game. For example,
this will usually happen when textures are assigned to a channel which causes the channel to
now be enabled. It also happens when features require a particular preprocessor macro to
change. In all of these cases Mesa will figure out which changes require a shader re-compile
and kick off compilation jobs on-demand.

One side benefit of this system is that it can serve has a handy live-reloading path for when
programmers iterate on material shader code. Since the ubershader code is shared by many
materials, changing the shared code would result in re-compiling many shaders. As an
alternative, programmers can instead instruct Mesa to reload a single material being edited
which causes the shaders to be re-compiled and re-loaded.



Mesalivelink - Textures

® Textures can also be live updated

® \Works for both adding a new texture or re-assigning an existing texture
® Mesa watches for file changes on referenced image files

® Texture build pipeline (parse, generate mips, compress) is
invoked when files are modified

® A Livelink message is sent to notify the game that it should
reload the texture

Santa
Monica
Studio

Finally, Mesa also supports live updating of assigned textures. This includes both adding a new
texture to a previously-empty slot, or changing an already-assigned slot to a different texture.
Additionally, Mesa will watch for file changes on any referenced textures to determine if they
have been modified by an external tool. In all of these cases, Mesa will run the normal texture
build pipeline to load the image file, generate mips, and compress it to a BC format. This
processed texture file can then be packed up and transmitted to the game in a LiveLink
message, so that the game can re-load the texture.



Influence

How using Maya affects systems design
and studio culture

Thank you Matt. Hopefully you’ve seen how Mesa Material Editor has developed and is
influenced by our we build our game in Maya. But now let’s talk about some other influences
on our tech and studio culture.



Examples of Influence

]. Mesh pipeline
2. Animation system
3. Team culture and structure

Santa
Monica
Studio




Mesh Pipeline

® Everything is hand-authored mesh.
® \We have no terrain systems or equivalent.
® This is incredibly powerful

® \What artists want to build, they con.

® Extensive uses of skirting.

Santa
Monica
Studio




Terrain

® As everythingis mesh we do not have aterrain system.

® Pros:
® \We'e not constrained by a 2D heightfield.

® Cons:
® Maonual mesh breckup and LODs by the environment art teom.

® Other terrain-specific optimizations are harder to do:

® Virtual texturing

® Procedural material generation o
Monica
Studio

If you don’t have any mesh that’s obviously terrain, it’s harder to write terrain specific
optimizations. On previous engines I've worked with, we could do virtual texturing just for
terrain. Or implement a custom LOD solution. Or procedurally generate materials. If it’s just

regular mesh, it’s harder to separate that out.



Terrain

® nfluence on studio culture:

® Since there is no automatic distant terrain, we have a vista artist.
® Snopping meshes to terrain:
® With aheight-maip terrain system, can be arun-time shader feature.

® At SMSthis is a Maya-based tool, snapping hoppens when saving a Mayafile.

® Future work:
® Hierarchical LODs. -

Santa
Monica
Studio

Although not having a terrain system has hindered us, | think in the long-term it sets us up
really well. For example, when we do implement an automatic distant LOD system, we're
going to write a hierarchical LOD system that works for all meshes, rather than just have

something for terrain and separate systems for other meshes on top of that.



Skirting

® How we solve harsh edges where one mesh joins another.

® \We build “skirts” to join two meshes.

® \ery artintensive.

® Assisted by tech features:
® Depthfode

® Ref paint tool

Santa
Monica
Studio

At other studios I've seen skirting be a huge issue. We’ve solved it in other ways — if you have
a terrain system, we've deformed objects to the terrain height, or blended terrain albedo into
objects that sat in the terrain. It’s also been a demand by art direction to ramp up SSAO to
solve the skirting problem... yes... | know...

Here, as everything is mesh in Maya, we’re able to solve this artistically, by hand placing mesh.



Example (from Midgard)

-
Santa
Monica
Studio




Tree without Skirt

Santa
Monica
Studio




Tree with Skirt

Santa
Monica
Studio




Depth Fade

® \Want meshes to fade where they join other meshes.
® Fither skirt meshes...

® Or meshes in general, avoiding the need for skirts.

® Brute force solution:
® Alphablend meshes

® Read the depth buffer and use “soft dlpha” to fade where the meshis
close to the depth buffer / an existing mesh.

Santa
Monica
Studio




Depth Fade

® Optimized solution (from Bart Wronski on God of War 2018):
® Modify the depth of the mesh to fade in a dithered pottern.
® o g.if we offset the depth by up to 5cm;

® The mesh starts fading out when within 5cm of amesh.,

® The meshis fully foded out ot Ocm from amesh.
® Conservatively modify depth to preserve early Z.

® Fade out the modify depth feature ot 50m from the camera.

Santa
Monica
Studio




Depth Fade

: U 1 Gl RkiFy Lakg™ 1 CIL" RARIN U1 CgL~ RAfIN
/ UNLT Ly Laps ARUs™ RB"1 " # LaPs HLCPB 1

/ UNFUGLIC, ® 3 OU 1 C4L" RkuFy. ONf L ¢UalHUBCE 1ij, L1 ijéygU Res:Pkd ™ 1. éeYgU R XUePs: L~ 1o fILCPACC

NC RC 3P0 1 CL" RkUFY. ONf L ¢UaLALBCE 1ij2 € RCx

/ UNLT LuaBLN R CCOCT PPy UNFUGLIC, @ PePINC” RC::

/ UNLT Lya, 2 PgPeld~ 1o =UNLT Lya, @ XUAPs s UNLT LUBBLN R™ CCOCAT =

/ UNLT Lya® 2 PgPsO RO D UNLT Ly, @ HLCPB™ 1 * - HLEP=g YOC::

OLa® UNLT Lya=_ frvis UNLT Lyaae . L1 Lyd. AC: a»
Santa

Monica
Studio

Note: we don’t do this in shadow maps



NO Depth Fade

We often use depth fade to blend rocks against the terrain.



B/Slelig Fdde of 3cm




Ref Paint Tool

® \We use vertex paint and vertex colors to blend between
different material layers.

® Asawhole levelis loaded in Maya at once, we can vertex
paint across the whole world.
® This helps blend two meshes ploced next together.

#® ie. blending to the same material layer on lboth meshes

® “\What you can doin Maya, you can do in game”

-
Santa

® But how does this work for instances? Mo

This is a great example of us supporting a very Maya-based workflow, just painting across the
world, but then supporting this in game.



Ref Paint Tool

® Problems with painting across instances:
® Need aseparate data set for each copy of the instance
® \When aninstance changes, all vertex paint dota is invalidoted

® Everywhere inthe world.

Santa
Monica
Studio




Ref Paint Tool

® \/ertex colors are stored in a point cloud.

® |f the underlying mesh changes, the painted point cloud remains the
same.

® Projected onto each mesh at build time.

® A copy of the data for eachinstance.

® Causes buid dependency problems:

® | oninstance changes, need to rebuild vertex color datain every place it

isused.
-

Santa
Monica
Studio




Santa
Monica
Studio




eomelry

Santa
Monica
Studio




Santa
Monica
Studio




Animation

® Artists caon easily animate;

® Meshes

® Transforms and visioiity

® Moteriol parometers

Santa
Monica
Studio

One engine | worked with, it was a feature request the rendering team to have light bulbs
swinging. Of course, that’s something that should just be done by the content creation team,
in engine, but in this particularly engine it was so hard as to be impossible. However, at SMS,
adding animations is easy.

This is a simple animated asset we have in a test scene. Let’s see how easy it is to add this
animation.



Attributes  Display S|

AP E

lect an object in the scene to nd edit its attributes

Load Attributes

We first need to select the object in Maya...



o

utliner Attributes  Display S| *

D
AnimAO

. Focus
L]
Presets

Show Hide

7 AnimAQ

& Material_Cloth_Li

Limit Information
Display

Node Behavi
[}

SCEASM B
SCEASM Zone
Extra Attributes

Load Attributes

Then if you look to the top right...



Attributes

Show Hide

¥ Transform Attributes

¥ Inherit

Pivots
Limit Information
Display

Node Behavior
[}

SCEASM Beha
SCEASM Zone
Extra Attributes

Load Attributes CopyTab

You'll see the Z coordinate of the transform in red, meaning that it’s animated.



Transform Attributes

s

hen Rendering

Notes: AnimAO

Load Attributes

If we right click on that and open it up, we see the animation we have assigned and can edit it.



Animation

ANIMAO_transiateZ

animCurveTl:

Show Hide

Santa
Monica
Studio

This is a pretty simple back and forth animation that we’re editing in Maya, and it comes right
into game.



Team Culture

® Content creators are empowered to build levels.

® Content creators take responsibility for quality and
performance.

® Tech can be viewed as atools and support group.

Santa
Monica
Studio

I’ve occasionally seen the attitude from artists of “well, it’s my responsibility to make this
level look good, so | don’t care about the technical features you want to add.”



Team Structure

® Environment artists own all parts of their level,

® Setdressing.
® Modeling.
® Materials.

® | evel design first author “sheet mesh” / “gray box” then
hand to art.

® | ots of back and forth between art and level design over metrics,
readability and collision. -

Santa
Monica
Studio

But this empowerment over artists has an effect on our team structure. As artists are given
so much control in Maya, typically an artist owns all parts of their level, from modelling to
materials to set dressing. We do have a classic split between level design and art though —
first level designers author sheet mesh, then hand to art. Of course there’s then plenty of
back and forth to ensure metrics and readability are respected, plus getting good collision.



The Future

Problems with Maya as an Editor and our
plans to overcome them




Problems with Maya as an Editor

® Build times
® Performance
® Everything must go through Maya

® Dependency on athird party application

Santa
Monica
Studio




Build Times

® |nitiolizing the Maya library takes 5s:

» CPU

~ MainThread (0x2484)  FA/[T

A
L im i B impol

Santa
Monica
Studio

Thanks Vadim for this info!



Build Times

® \We spend ~160 hours/week to process content through the
Maya API;

Total Build Time (Applications) - Hours / Day - Human

— shadercompilerorbis.exe
frommaya.exe

— mesamaterialeditor.exe
smtexturebuilder.exe
mayabinary.exe

— animationbuilder.exe
packprewad.pl

— linkwad.exe
compilex3d.exe

— materialexporter.exe

— datacompiler.exe

06/0800:00 06/0812:00 06/0900:00 06/0912:00 06/1000:00 06/1012:00 06/1100:00 06/1112:00 06/1200:00 06/1212:00 06/1300:00 06/1312:00 06/1400:00 06/141200  — feyelscriptingbuilder.exe

Santa
Monica
Studio

Thanks Vadim for this info!

These figures are from a year or two ago, but haven’t changed much.



Build Times

® \We dready optimized searching Maya files for
dependencies.

® “MayoNinja™:
® Our custorm Maya parsing tool.

® Many times faster than using the Maya AP,

Santa
Monica
Studio




Performance

® \When opening a typical game scene:
® _5minutes oninitial lounch
® _/40 seconds on subsequent lounch

® \When proxies are built

® A propriety system to build proxy meshes of the scene for fast loading

® _10 seconds toload atypical ref node

® |n the fastest scenario:

® 1 minute for an artist to work on a small part of the level

Santa
Monica
Studio




Performance

® Scene culler tool:
® For animators working on cinematics.
® Cuts out the relevant portion of the .mb scene to the cinematic.

® To significantly improve load times.

Santa
Monica
Studio

To solve performance problems with Maya and .mb files, we don’t just have the proxy
system. We also have this scene culler tool for animators.



Everything Goes Through Maya

® Everythingin our game has to go through Maya.

® Mayaisnt always the best tool for the job.
® Houdini for procedural development.
® Rise injunior artists who know Blender.

® Simple level design work:

® Placing audio emitters.

Santa
Monica
Studio




Dependency on a Third Party Tool

® |t's unhealthy for the studio to be so dependent upon one
third party tool

® Dependent upon Autodesk for support

Santa
Monica
Studio




OpenUSD

® OpenUSD solves many of our problems.
® Fast AP
® |nteroperability with many DCCs

® OpenUSD editors already exist
® g NVIDIA Omniverse

Santa
Monica
Studio




OpenUSD (6%

® The OpenUSD APlis up to 70x faster than the Maya AP,

® For atest scene with 17788 meshes (272k vertices, 108k indices):

-
Santa
Monica
Studio

We compare Maya in blue and OpenUSD in orange... in total it’'s over a 7000% speed up!



OpenUSD

® Opening the Maya scene mentioned earlier:

® 50 seconds to load the entire level, including all ref nodes.

® No need for aproxy system.

Santa
Monica
Studio

Previously it was 40 seconds in the best case scenario to load the level minus any ref nodes,
plus around 10 seconds to load an individual ref node. Often (if proxies weren’t built) it

would take a significant amount longer.

With USD we always hit our previous best case scenario... and actually have the whole level
loaded. And we can remove our complicated proxy system from the engine.



PC Build & Editors

® Developing an editor but not WYSIWYG.
® Maintenance for rendering teami s very high.
® Particularly for DirectX 12.

® APlissues:

® DirectX12 / Shader Model 6.0 is mandatory to support PlayStation 5
grophical features.

® Maya stil requires Shader Model 5.0 shaders and DirectX .

® | ook into MaterialX for DCC-agnostic shader/material -

Santa

support. syl

As mentioned earlier, Maya is not the best place for many level design tasks, such as placing
audio emitters. We’'re developing an editor for those.

We preview our materials in Maya, so we need HLSL Shader Model 5.0 shaders.



Summary




Conclusion

® Using Maya as an editor has heavily influenced SMS:
® Engine design and architecture
® Artist workflows

® Company culture

® Maya also has many limitations:
® The future is OpenUSD

Santa
Monica
Studio




Thanks

® S\S: ® REAC:

® Josh Hobson ® AngeloPesce

® \/adim Slyusarev ® Stephanie Sompson
® Mat Hendry ® Natalya Totarchuk
® Som Sternklor ® Michoel Vance

® Nathon Kennedy

® Kyle Bromley

® Allpast and current contributors D

. t
to our engine e
Studio




Thank Youl!

Stephen McAuley Maitt Pettineo

Technical Director Lead Rendering Programmer
stephenmcauley@sony.com moattpettineo@sony.com
@stevemcauley @mynameismjp

-
Santa
Monica

Studio  stupios




)
Santa Monica Studio

Our journey
Your story

We're hiring for what's next!

We're expanding our family across disciplines and would love

to meet you. Please visit sms.playstation.com/careers for all
openings or drop us a line at sms@sony.com

@ santamonicastudio y @ SonySantaMonica n @ santamonicastudio



http://sms.playstation.com/careers
mailto:sms@sony.com




Santa
Monica
Studio




