


Maya as Editor
The game development approach of 
Santa Monica Studio
Stephen McAuley, Technical Director
Matt Pettineo, Lead Rendering Programmer



Both Matt and I are fairly recent to the studio, which started back in 1999. So in talking about 
the engine and the choices made, we weren’t there at the time. However, we both have 
worked at studios that use Maya as an editor before, and we can observe how our use of 
Maya at SMS affects the studio culture. So although some of this talk is guess work and 
assumptions about where we came from, there hopefully is still a lot of good knowledge here

The Speakers

Stephen McAuley
Technical Director

Joined in August 2020

Matt Pettineo
Lead Rendering Programmer

Joined in April 2023



Founded in 1999 and primarily known for the God of War franchise, although we started off 
with a game called Kinetica, which I didn’t even know until I started writing this talk. We’re 
most recently known for the God of War reboot in 2018, and its follow up, our most recent 
release, God of War: Ragnarök in 2022.

The Studio

2001
Kinetica

2005
God of War

2018
God of War

2022
God of War:

Ragnarök

2013
God of War:
Ascension

2010
God of War III

2008
God of War II



We use Maya as an 
Editor…



So how did this come about?

Why use Maya as an Editor?
•Content creators are familiar with the tool.

•No need to write your own editor.

•Extendable.
•Easy to add your own UI and tooling.

•No need to maintain a PC version of the game.
•Particularly relevant historically for first- or second-party studios.



Other editors can of course be used. Either DCCs like Photoshop or Houdini; or in-house 
tools like our GI baking tool or visual script editor. But fundamentally all data they produce 
goes through Maya.

How is Maya used?
•All game content is assembled in Maya.

•Meshes

•Animations

•Game objects
• Collision, trigger volumes, scripts, cameras etc.



We will cover how this works later in the presentation.

How do you Live Edit?
•The game is always run on console.

•Maya has a “LiveLink” connection to the game on console.

•This provides real-time updates in game as you edit in 
Maya.



This use of Maya has heavily influenced the studio – both technically, and culturally.

One example is how we don’t have a terrain system – this of course doesn’t map into Maya. 
Instead everything is just mesh, because that’s what Maya supports and expects.

We’re going to dig into more influences on the studio later in the presentation.

How does this Affect Game Development?

•The engine is built around Maya concepts and hierarchy.

•Content creators are given control.
•“What you can do in Maya, you can do in game” *

• * With exceptions

•More focus on build time systems and tools, as opposed to 
run time systems and bespoke technical features.

•e.g.
• No terrain system

• Everything is mesh



Let’s begin by talking about some base engine concepts, that will help ground us for the rest 
of the presentation.

Base Concepts
How the game is built in Maya



Game Architecture
•Our game is split into wads.

•These are the fundamental building blocks of the game that are built 
offline and loaded/unloaded/streamed by the game.

• Each wad has its own specified memory budget.

•Examples:

• A section of a level is a wad.

• Kratos is a wad.

• Atreus is a wad.



Game Architecture
•Each wad has a definition file that states which Maya binary 

files to load/build.

Memory 
Budget

Maya 
file



Game Architecture
•These are typically “parent” .mb files which reference:

•A “_Vis.mb” file, for visual/art content.

•A “_Col.mb” file, for collision data.

•A “_Nav.mb” file, for navmesh data.

•And more…



For example, see this tree outside of Kratos’ house in Midgard. We have ref nodes for each 
tree in the level, then each tree has multiple ref nodes for trunk and branches.

Optimizing Game Objects
•Maya scenes are then long hierarchies of ref nodes:



Ref Nodes
•A ref node is where a Maya file is referenced into another.

•Our game is fundamentally built from long hierarchies of ref 
nodes.

•Each ref node is built separately and stitched together using 
a tool called LinkWad.

•LinkWad collects all built Maya files that make up a wad and links them 
together.



As we said at the start, Maya is very customizable. Our Maya scenes aren’t just full of art.

Plugin Node Types and Data
•We have over 100 custom Maya plugin nodes

•Entities, sounds, lights, wind, camera targets, collision, etc.

•Attributes on the node used to store their set of data
•Maya’s native Attribute Editor provides a user interface

•Nodes can have many custom behaviors, as well as 
custom visualizations



Example Plugin Node: SMLight



DataCompiler Nodes
•Many plugin nodes use a generic “DataCompiler” path

•Custom DDL used to describe node properties

•DataCompiler generates C++ code for:
•Setting up attributes on the Maya plugin node

•Runtime data class used by the game

•Simplified setup for nodes that just need to store data



Now that we have our grounding about how the game is built in Maya, let’s delve deeper into 
our engine architecture, and how it’s influenced by Maya scene hierarchy.

Engine Architecture
Maya scene hierarchy and 

our engine



First, let’s explain a little about our architecture.

Having all components of the same type, such as lights, updated by the same server is a good 
data-oriented design optimization.

This architecture actually goes all the way back to 1999 and the studio’s founding!

Some programmers on our team are probably screaming at me right now, saying it’s much 
more complicated than this. It’s true. There are cases where servers are entities and clients 
are also entities, for example. But this whole system is outside the scope of the talk.

Engine Architecture
•We use an equivalent of an entity component system*:

•Game objects are entities
• Game objects have hierarchies (i.e. they have a parent and children)

•Clients are components

•Servers manage lists of clients
• i.e. so all light clients are updated by the same server 

* Warning: This is a simplification. The full system is outside the scope of this talk.



Having all components of the same type, such as lights, updated by the same server is a good 
data-oriented design optimization.

This architecture actually goes all the way back to 1999 and the studio’s founding!

Some programmers on our team are probably screaming at me right now, saying it’s much 
more complicated than this. It’s true. There are cases where servers are entities and clients 
are also entities, for example. But this whole system is outside the scope of the talk.

Engine Architecture
•Some example clients (relevant to rendering):

•Lights

•Static meshes

•Models

•FX blenders:

• Cubemap region

• Lighting environment

• Color correction



Let’s now move onto Maya.

This is one of our visual tests, and it’s a good simple example of a scene hierarchy.

The Layout of a Maya Scene
•Let’s use triggerVolMultiRefnode.mb as an example scene:



The Layout of a Maya Scene
•We have two ref nodes (triggerVolumeTest_source.mb):



They actually happen to reference the same Maya file

The Layout of a Maya Scene
•We have two ref nodes (triggerVolumeTest_source.mb):



The Layout of a Maya Scene
•A camera:



The Layout of a Maya Scene
•Lighting settings:



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.

Embedded ref node



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.

Instanced ref node



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.

Lights



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.

Meshes



The Layout of a Maya Scene
•Let’s open the triggerVolumeTest ref node.

Transforms



The Layout of a Game Scene
•What creates a new game object?

•What becomes a client?



What Becomes a New Game Object?
1. Root transforms in the Maya scene

2. Instance ref node transforms
•i.e. the parent transform of the actual ref node

3. Transforms with the “new game 
object” Maya attribute set



“cube” has a transform at the root of the triggerVolumeTest ref node.

Example 1
•“cube”

•In the root of triggerVolumeTest ref node .mb.

•Creates a new game object “gocube”.

•Creates a static mesh client attached to the 
game object.



Example 2
•“triggepntLiteShape2”

•In the root of triggerVolumeTest ref node .mb.

•Creates a new game object 
“gotriggepntLiteShape2”.

•Creates a light client attached to the game 
object.



Example 3
•“triggepntLiteShape4”

•Under the group1 transform.

•Does not create a new game object.

•Creates a light client attached to the game 
object “gogroup1”:

• group1 is a transform at the root of the Maya scene.



Explicit Game Objects
•You can also flag objects to be explicit 

game objects.
•e.g. if you need to refer to them in script.

•“Keep joint” is another flag:
•The transform for this part of the object is not 

baked.

•Adds possibility to animate.



As instanced ref nodes are built separately, we don’t know about the surroundings when 
building. So “cube” is in the root of the cube2 ref node scene, and when cube2 is built, we 
create a new game object for “cube”. When cube2 is instanced into triggerVolumeTest, we 
also create a new game object for cube2, so we have a ref node hierarchy.

Example 4
•“cube2”

•Instance ref node transform.

•Creates a new game object “gocube2”.

•“cube”
•Root transform in the cube2 ref node Maya 

scene.

•Creates a new game object “gocube”.



As instanced ref nodes are built separately, we don’t know about the surroundings when 
building. So “cube” is in the root of the cube2 ref node scene, and when cube2 is built, we 
create a new game object for “cube”. When cube2 is instanced into triggerVolumeTest, we 
also create a new game object for cube2, so we have a ref node hierarchy.

Example 4
•Game object hierarchy:

•goroot
• gotriggervolumetest

• gocube2

• gocube



Optimizing Game Objects
•Recall that artists build long hierarchies of ref nodes:



So if we go back to our simple example…

Optimizing Game Objects
•This means we create significant 

amounts of game objects.
•e.g. we have game objects for:

• cube, cube1, cube2, cube2/cube, pPlane1

•None of these are animated or scripted.

•These could all be one mesh.



Static Mesh Optimization
•Static mesh optimization introduced in God of War 2018.

•Performed in “LinkWad”.
•Where all the Maya files that constitute a wad are stitched together.

•Pulls all suitable mesh instances out of the hierarchy.

•Gathers them into new root-level objects.
•Transforms and other inherited properties baked in.

•Original game objects are stripped out of the wads.



We had 1.8 million game objects, but only 185,000 were directly animated (just under half 
had their transform animated, just over half had their visibility animated). We only need to 
keep directly animated game objects in principle, but as the static mesh optimization applies 
only to meshes, some non-directly animated game objects for particles, collision etc. would 
remain.

However, in total, that meant we kept just 185,000 game objects out of an initial 1.8 million, 
which is nearly a 90% reduction!

Static Mesh Optimization
•An example from God of War 2018:

•Game objects: 1,800,000

•Directly animated game objects: 185,000

• Transforms: 85,000

• Visibility: 100,000

•Ideally only need to keep directly animated game objects:
•However, static mesh optimization only applies to meshes.

•Nearly a 90% reduction in the number of game objects.



LiveLink is a really big part of our engine, so we need to talk some more about it…

LiveLink
•We’ve just flattened and merged part of our 

ref node hierarchy… but what if we need it?

•LiveLink:
•Our tool that sends live updates from Maya to the 

game.

•If I move cube2, how do I tell the game to 
update its transform?

•We’ve merged and flattened it.

•We keep the hierarchy as “LiveLink” only.



I’m now going to talk a bit how we do live editing at SMS as part of our core workflows, as 
well as the underlying technology that we use for implementing live editing.

Live Editing
How LiveLink connects Maya 

and the console



“LiveLink” is the name we use internally at SMS to refer to our framework for passing data 
between our various PC-based tools as well as the game running on the console. The primary 
goal of this framework is to essentially allow tools to live edit aspects of the game while it’s 
running on the console, which our tools generally do by sending messages and data across 
the network. This ability to live edit is extremely important for development as we do not 
have a version of the game or engine that runs on PC, which means the game must be 
running on the console in order to actually see the final rendering, animation, or gameplay 
results. While we do have some limited ability to preview assets directly on the PC (which I’ll 
talk about later), in general we rely very heavily on LiveLink workflows to be get feedback on 
changes as we’re making them.

LiveLink
•Generic framework for passing data between tools and 

the game

•“Edit the game while it’s running”

•Allows editing tools to run on the PC while the game runs on 
a console

•See final visual results without a PC version of the game or 
renderer



Before I go over the use cases for LiveLink, I wanted to give a brief overview of how LiveLink 
works under the hood. To start, we have a diagram here showing the general connection and 
data flow for LiveLink. On the left we have a group of LiveLink “clients”, which are each an 
application that can make a connection to the central services so that they can ultimately 
send messages to LiveLink servers. These clients are typically custom in-house tools that run 
on the PC, but can also include third-party tools such as Maya where we integrate LiveLink 
via a plugin. 

The middle shows our persistent services, which we refer to as “sms-services” internally. 
These services area always running in the background on the developer’s host PC. The Redis 
Transport service is the important one here, but we also have some other services available 
for other use cases. We also have a service that provides debugging and logging for all 
LiveLink traffic, which can be useful for inspecting what a tool is doing or diagnosing a 
problem. 

Finally we have our LiveLink servers on the right, which are apps that receive LiveLink 
messages and can respond to them. The main server is the game, which is the recipient of the 
majority of our LiveLink messages. However other tools such as the material editor or 
material baking system can also act as servers to allow the game to send its own messages to 
these tools.

LiveLink Architecture

Clients Services Servers

Material Editor

Script Editor

Maya

Script Editor

VFS Tool

Redis Transport
Game

Material Editor

Material Baker
Debugging and 

Logging



Under the hood, LiveLink works with a set of wrapper functions that’s known internally as 
“SMAPI”. These basically server as a broad API that clients can use to communicate with the 
game to send it messages and data, with the calling code basically calling regular C++ or C# 
functions. Each API call has a unique message that gets sent, which can include an arbitrary 
payload. We use Protocol Buffers to automatically generate the message payload structs from 
the protobuf DDL, which also handles serialization for us. The way that communication 
happens is that the LiveLink system opens a network connection to the Redis server that’s 
running locally on the host PC, and uses Redis pub/sub channels to publish the messages to a 
particular channel. These channels roughly map to a particular LiveLink server, which allows 
those servers to pull the messages intended for it from Redis. Since it’s happening over the 
network this allows servers to be running on a console, or it could just be a process on the 
host PC. Messages also allow replying with a result, which essentially allows the API to act as 
remote procedure calls.

LiveLink Architecture
•The game and other servers expose a broad “API”

•Known internally as “SMAPI”

•Each API has a unique message and handler
•Protocol Buffers for arbitrary message payload

•API pushes messages to pub/sub channels on local Redis server

•Message receiver pulls the message data from Redis
•Could be the game running on a console, or a process on the host PC

•Messages can also return RPC-style results through the API



Let’s now look at some of the clients that make use of LiveLink. To start, we have Maya 
which connects to the game to automatically propagate edits to the scene in real time. I’ll go 
into some of the details in a bit, but here in the video you can see Maya on the left and the 
game running on the right. As I re-position the camera in Maya or move the nodes around, 
the changes are immediately reflected in the running game. We also support a limited ability 
to duplicate existing meshes and nodes, which you can see me do towards the end. In 
practice there are all kinds of things you can do through LinkLink in Maya, but I’ll talk a bit 
more about this later.

LiveLink Clients
•Maya

•Update node transforms and properties



Here we have our visual script editor, which is a newer tool and system that was added for 
God Of War: Ragnarok to replace the previous lua-based scripting system. The script editor 
has debugging functionality that works by connecting to the game over LiveLink and 
communicating state. The editor can set breakpoints to know when a particular node has 
been executed, and can also propagate changes to the game without having to restart.

For more information about the visual scripting system, you can check out our presentation 
from GDC 2023: https://www.gdcvault.com/play/1028787/-God-of-War-Ragnark

LiveLink Clients
•Visual Script Editor

•Script breakpoints and live edit

•See our GDC 2023 presentation



As an example of a more unusual client, we also our automatic performance capture and 
telemetry framework. This system utilizes LiveLink to gather performance statistics from the 
game itself as it’s being run by developers, which can then be visualized and queried through a 
web interface. The data can be used to easily see which areas are over-budget and how 
they’re trending over time. The tools also support generating heat maps which can also be 
really useful for locating problematic content.

LiveLink Clients
•Automated performance captures

•Gather CPU and GPU performance stats from the running game



The “Virtual File System” is a core piece of engine technology that has existed since the 
studio’s earliest games. While it used to be used more broadly for core game data, these days 
it’s used for exposing development-only “tweak” variables. VFSTool is an internal tool that 
runs on the host machine and exposes a simple UI for interacting with these VFS tweaks. It’s 
similar to an ImGui debug menu, except it predates ImGui does not need to run on the 
console itself. This tool uses LiveLink to query which the VFS directory structure, the type of 
the tweak, as well as its current value. It also obviously allows changing the value, and 
communicates when a tweak has been changed from its default value.

LiveLink Clients
•VFSTool

•“Virtual File System”

•Tweak variables/settings from host PC



Mesa, our internal material editor utilizes LiveLink extensively to allow live editing and 
preview of materials in the game. This includes modifying bool/float/color properties as well 
as assigning new textures. I’ll be talking more about Mesa in the next section.

LiveLink Clients
•Material Editor

•Live update material 
properties and textures

•More on this later!



Let’s now return to Maya to talk a bit about how live editing is implemented. Maya is perhaps 
our most important LiveLink client, since it’s the main interface for editing the game world. 
Since Maya is a closed-source third-party tool, we utilize Maya’s plugin architecture to extend 
it with our LiveLink functionality. This plugin works by registering node add and removal 
callbacks using the Maya API, which allows the plugin to internally keep track of every node in 
the scene without having to constantly poll and traverse the DAG. Once the plugin is aware 
of a node, it can then register a callback to have Maya notify it whenever an attribute has 
been modified, added, removed, or renamed. These attributes encompass built-in maya 
properties like translation/rotation/scale, as well as custom attributes that our plugins 
register to represent data that is only meaningful to our engine. Based on the what changed, 
the plugin can then extract the relevant information from the node + attribute and package it 
up in a message to send to the game. This typically includes the node GUID as well as the 
attribute name and value at minimum. 

On the game side the gameObject and client ends up getting a virtual method called so it can 
handle the AttributeChanged message. Some clients have special-case handling, but in many 
cases we can use a generic path for DataCompiler nodes that simply copies the new attribute 
value to a location in memory.

LiveLink In Maya
•LiveLink functionality provided by a native plugin dll

•Register node add/removal callbacks 
•Update the game on removal or rename

•Register AttributeChanged callback for all nodes
•Track attribute modification, add, removal, rename

•Update the gameObject/client with new attribute status using a GUID

•Generic path DataCompiler nodes that maps attribute -> memory



Our LiveLink plugin does more than just track and replicate node attributes. The full list is 
too large for this presentation, but let me provide a few other examples. Another important 
LiveLink functionality is syncing the game’s animation timeline with Maya’s. This allows 
controlling the animation state directly from Maya, including scrubbing the timeline. In 
addition to the animation timeline, the plugin can also track edits to animation curves and 
notify the game so that the changes can be replicated. Finally, we also have a bi-directional 
camera link between Maya and the game. This allows the game camera to follow Maya’s 
camera, which is useful for live edit scenarios. Or alternatively Maya’s camera can be synced 
to the game’s camera, which is convenient to locate where the player is within a larger area.

LiveLink In Maya
•Track Maya animation timeline status

•Game stays in sync when playing animations or scrubbing the timeline

•Can also track edits to anim curves and replicate in-game

•Bi-directional camera link
•Track Maya Cam – game is synced to Maya camera

•Track Game Cam – Maya is synced to in-game camera

•Too many to list!



Next, I would like to talk about Mesa, which is our in-house material editor.

Mesa Material Editor
How we create and edit 

materials



Mesa is actually our second-generation material editor, and was written during development 
God Of War: Ragnarok to replace the material editor that had been used for previous titles. 
Currently almost all materials are created and edited with Mesa, with the exception of a few 
legacy use cases that have not been replaced yet. 

From a high-level, one thing that’s important to note about Mesa is that it exposes a fixed set 
of controls and parameters for the material that’s directly tied to a hand-written 
ubershaders. In other words, we do not expose a visual shader graph that allows technical 
artists design their own shader logic that determines the final shading parameters for our 
core BRDF.

Mesa Material Editor
•Second generation internal material editor

•Almost all materials are made with Mesa
•With some exceptions

•Exposes a fixed set of material parameters and features
•No shader graphs! Only hand-written ubershaders.



The core shading model used by Mesa materials is a principled shading model, similar to what 
you might see in OpenPBR. What this means is that the shading model has several “features” 
that correspond to different BxDF terms for diffuse and specular, which can each be enabled 
and controlled independently with well-defined interactions. These features include Disney 
Diffuse and isotropic GGX specular as a baseline. But optionally we also support anisotropic 
GGX, subsurface scattering, specular transmission, retroreflection, sparkles/glints, and 
iridescence. We also have a hair BxDF based on the Marschner model, which is mostly 
mutually-exclusive with the other shading features.

Mesa Material Model
•Materials use a “Principled” shading model

•Disney Diffuse

•GGX Specular (Isotropic and Anisotropic)

•Subsurface Scattering

•Specular Transmission

•Retroreflection

•Sparkles/Glints

•Irridescence

•Hair



Internally, Mesa materials are built around a layer stack. This stack is similar to what you 
would see in Photoshop or Substance Painter, where the stack defines an implied order of 
how the layers are blended together. The result of blending these layers is ultimately the 
surface and shading parameters that feed into our principled shading model. This is effectively 
“horizontal” layering, since we’re just blending parameters. We don’t support any kind of 
arbitrary “vertical” layering, which would require evaluating multiple interactions as light 
scatters into and out of the physical layers. 

In many cases a single material is effectively a meta-material formed by combining many 
individual sub-materials together through layers. For example stone might be one layer, with 
moss being a secondary layer blended on top. To facilitate this, we support “layer 
referencing”. This allows artists to create a library of base materials, which can then be used 
as individual layers. This avoids having to replicate material properties for each potential layer 
combination.

Mesa Material Layers

•Organized as a “stack”
•Similar to Photoshop or Substance Painter

•Blends parameters together to get the final 
shading parameters

•Layers can also be “referenced” to 
allow sharing a layer among several 
material assets



Each layer exposes a uniform set of “channels. Each channel is typically a combination of a 
texture map with a set of parameters that combine with that texture. The channels then map 
to some major component of our shading model. For example we have base color, normal, 
emissive, gloss, AO, scattering distance, and iridescence as separate channels.

For multi-layer materials, the secondary layers are setup so that each channel must “opt in” 
to participating in the blend. This allows layers to only override a subset of the channels 
rather than affecting all of them.

Each layer also has a set of UV transform properties that affect all channels in the layer. This 
includes simple operations like scale/rotation/translation/scroll, as well as more complex 
transformations such as parallax mapping.

Mesa Material Layers

•A uniform set of channels is exposed 
per-layer

•Secondary layers opt-in to channels they 
want to modify

•A layer UV transform is shared among
all channels

•Some channels have an optional UV override



In Mesa, each layer can be either “live” or “flattened”. For live layers we evaluate the layer at 
runtime in the pixel shader, and then blend the results. For flattened layers we flatten that 
portion of the stack offline to produce a set of pre-blended textures. This happens during a 
step on our content build pipeline, and ultimately uses the same logic as our live layer 
blending so that the expected results are produced. The advantage of this approach is that it’s 
fully built into our material editor and build pipeline, and avoids the need to have to go into 
an external tool such as Substance Designer to produce textures (although I should point out 
that we still use Substance Designer quite a bit internally). However it is also a significant 
trade-off, since flattening adds considerable complexity and maintenance cost for the 
rendering team. Another thing to point out is that over-usage of flattening can also cause 
issues for texture memory and disk footprint. Flattening is often viewed as “free” compared 
to live layers since the results are precomputed, but that can sometimes lead to flattening 
being used for relatively simple cases. For example, there might be N variations of a material 
where the base color is just tinted differently.

Mesa Layer Flattening
•Layers can be “live” or “flattened”

•Flattened layers go through a custom pipeline to generate 
a combined texture at build time

•Uses the same layer blending logic as live layers

•Avoids having to go to an external tool
•But adds considerable complexity and maintenance cost

•Over-usage of flattening can bloat texture memory 
footprint



In terms of how materials map to actual compiled shaders, each material generates a block of 
shader code that corresponds to the exact options and parameters configured in the 
material. The bulk of this generated code takes the form of structs that contain hard-coded 
parameter values for things like tint colors and flags. The remainder is mostly comprised of 
code to sample the assigned textures for a particular channel. This part is also responsible for 
applying any requested UV transformations before sampling the texture.

This generated code then ends up being included by our hand-written ubershaders that form 
the overall structure of the shaders. We have a generic set of functions and utilities that can 
use the generated code to calculate the layer alpha, evaluate the layer channels and then 
blend the channels based on the alpha value. In practice we have a set of these ubershaders 
for different purposes, for example for rendering opaques to a G-Buffer or rendering 
transparents with forward lighting.

Ultimately our build pipeline ends up generating and compiling N sets of shaders for each 
material, where each set has a vertex shader + pixel shader at minimum. Most of these sets 
are tied to a particular variant that might be requested by the mesh using the material, for 
example skinning vs. non-skinned. However in some cases we have special rendering paths 
for different material types that result in multiple passes, which can result in additional shader 
sets being compiled.

Material Shader Pipeline
•Each material asset generates some shader code

•Structs containing hard-coded parameter values

•Texture sampling and final UV calculation

•Hand-written ubershaders include the generated code
•Generic framework to blend layers to get final parameters

•Different shaders used for opaque, transparent, refraction, etc.

•The build pipeline compiles N sets of shaders for each 
material



Mesa does also feature a real-time live preview that’s rendered on the host PC. This preview 
image is generated using a set of bespoke DirectX11 shaders, which include some of the 
game’s actual actual shader code to perform the same BRDF evaluation. However this is 
ultimately done in a very simplified forward lighting environment, since the Mesa codebase 
does not have nearly any of the same rendering features that the game has. Instead Mesa just 
uses a simple lighting environment with a pre-convolved HDR lighting probe and an analytical 
directional light. For many shading features this is sufficient to get a decent approximation of 
what the material will look like in-game. But some of the more advanced ones, like subsurface 
scattering, aren’t replicated because they would require additional passes.

Another thing to point out about this approach is that it requires a subset of our shader code 
to be directly included in the DX11 shaders, which means they must compile under FXC’s 
very limited feature set.

Mesa Material Preview
•Mesa runs bespoke DX11 shaders to 

display a real-time preview

•Includes some of the actual in-game 
shader code for lighting/BRDF 
evaluation

•Uses a simplified lighting environment
•Single environment probe + directional light

•Currently requires shared shader code 
to compile in DX11/FXC



As a quick aside, I also want to briefly cover how our materials are represented in Maya. For 
Maya we have an additional plugin that interacts with Viewport 2.0 to override the shader 
and textures used when drawing a mesh. This allows us to provide our own shaders that can 
be used which can approximate the look of the mesh in the actual game.

The way we do this is by having an additional base ubershader that includes the generated 
material shader code, just like our in-game shaders. However in this case the shader uses 
Maya’s mesh and lighting inputs to calculate the final surface parameters, and then compute 
the final lighting from those parameters. What this means is that the shading parameters 
inside of the shader actually match the game very closely, but the actual lighting environment 
is vastly different. And just like the Mesa preview, we lack external passes such as subsurface 
scattering or decals which causes the appearance to diverge even further.

It’s also worth pointing out that this is yet another place that requires a subset of shader 
code to compile under DX11 and FXC, which severely limits the shader language features 
that we can use.

Maya Material Preview
•Inject a custom DX11 shader for meshes with SMS materials

•Uses MPxShaderOverride and Viewport 2.0

•Uses a bespoke ubershader that includes the generated 
material shader code in order to blend layers

•Evaluates shading with Maya’s lighting environment

•Matches the game material parameters exactly, but not 
the lighting

•This also requires shared shader code to compile in FXC L



Returning back to Mesa, I want to finish by talking about how LiveLink works to implement 
live editing within the game. This workflow is absolutely critical for authoring materials, since 
it’s the best way to see how a material actually responds with the game’s full lighting 
environment and features. The way it work is that Mesa internally tracks changes to the 
underlying material document as they happen. As changes occur, they are sent to a thread 
which performs necessary processing to update the game with the detected changes. When 
the first change is detected, the first step is usually is to on-the-fly compile a “half-baked” 
variant of the shaders that the game will switch to. This development-only variant replaces 
hard-coded parameters with constant buffer values, which allows those values to be live 
updated by the game. Mesa can then form LiveLink messages when parameters are changed in 
the UI, and the game responds to them by updating the constant buffer.

Mesa LiveLink
•Allows seeing the final live material appearance with the 

real in-game lighting conditions
•Crucial for art and material workflows

•Mesa tracks changes as they happen, sends LiveLink 
messages to the game to update it

•Materials switch to “half-baked” shaders with parameters 
stored in constant buffers so that they can be updated

•Mesa compiles these on-the-fly as-needed



Some material changes can’t be represented with a simple constant buffer update, and will 
cause Mesa to re-compile the half-baked shader and send it over to the game. For example, 
this will usually happen when textures are assigned to a channel which causes the channel to 
now be enabled. It also happens when features require a particular preprocessor macro to 
change. In all of these cases Mesa will figure out which changes require a shader re-compile 
and kick off compilation jobs on-demand.

One side benefit of this system is that it can serve has a handy live-reloading path for when 
programmers iterate on material shader code. Since the ubershader code is shared by many 
materials, changing the shared code would result in re-compiling many shaders. As an 
alternative, programmers can instead instruct Mesa to reload a single material being edited 
which causes the shaders to be re-compiled and re-loaded.

Mesa LiveLink - Shaders
•Some material options still cause a re-compilewhen using 

half-baked shaders
•Mainly which textures/channels are sampled

•Also options that affect the vertex shader inputs/outputs

•Mesa will track these and re-compile shaders as necessary, 
then update the game

•Also works as a convenient live-reloading path for 
programmers iterating on material shader code



Finally, Mesa also supports live updating of assigned textures. This includes both adding a new 
texture to a previously-empty slot, or changing an already-assigned slot to a different texture. 
Additionally, Mesa will watch for file changes on any referenced textures to determine if they 
have been modified by an external tool. In all of these cases, Mesa will run the normal texture 
build pipeline to load the image file, generate mips, and compress it to a BC format. This 
processed texture file can then be packed up and transmitted to the game in a LiveLink 
message, so that the game can re-load the texture.

Mesa LiveLink - Textures
•Textures can also be live updated

•Works for both adding a new texture or re-assigning an existing texture

•Mesa watches for file changes on referenced image files

•Texture build pipeline (parse, generate mips, compress) is 
invoked when files are modified

•A LiveLink message is sent to notify the game that it should 
reload the texture



Thank you Matt. Hopefully you’ve seen how Mesa Material Editor has developed and is 
influenced by our we build our game in Maya. But now let’s talk about some other influences 
on our tech and studio culture. 

Influence
How using Maya affects systems design 

and studio culture



Examples of Influence
1. Mesh pipeline

2. Animation system

3. Team culture and structure



Mesh Pipeline
•Everything is hand-authored mesh.

•We have no terrain systems or equivalent.

•This is incredibly powerful:
•What artists want to build, they can.

•Extensive uses of skirting.



If you don’t have any mesh that’s obviously terrain, it’s harder to write terrain specific 
optimizations. On previous engines I’ve worked with, we could do virtual texturing just for 
terrain. Or implement a custom LOD solution. Or procedurally generate materials. If it’s just 
regular mesh, it’s harder to separate that out.

Terrain
•As everything is mesh we do not have a terrain system.

•Pros:
•We’re not constrained by a 2D heightfield.

•Cons:
•Manual mesh breakup and LODs by the environment art team.

•Other terrain-specific optimizations are harder to do:

• Virtual texturing

• Procedural material generation



Although not having a terrain system has hindered us, I think in the long-term it sets us up 
really well. For example, when we do implement an automatic distant LOD system, we’re 
going to write a hierarchical LOD system that works for all meshes, rather than just have 
something for terrain and separate systems for other meshes on top of that.

Terrain
•Influence on studio culture:

•Since there is no automatic distant terrain, we have a vista artist.

•Snapping meshes to terrain:

• With a height-map terrain system, can be a run-time shader feature.

• At SMS this is a Maya-based tool, snapping happens when saving a Maya file.

•Future work:
•Hierarchical LODs.



At other studios I’ve seen skirting be a huge issue. We’ve solved it in other ways – if you have 
a terrain system, we’ve deformed objects to the terrain height, or blended terrain albedo into 
objects that sat in the terrain. It’s also been a demand by art direction to ramp up SSAO to 
solve the skirting problem… yes… I know…

Here, as everything is mesh in Maya, we’re able to solve this artistically, by hand placing mesh.

Skirting
•How we solve harsh edges where one mesh joins another.

•We build “skirts” to join two meshes.
•Very art intensive.

•Assisted by tech features:
•Depth fade

•Ref paint tool



Example (from Midgard)



Tree without Skirt



Tree with Skirt



Depth Fade
•Want meshes to fade where they join other meshes.

•Either skirt meshes…

•Or meshes in general, avoiding the need for skirts.

•Brute force solution:
•Alpha blend meshes

•Read the depth buffer and use “soft alpha” to fade where the mesh is 
close to the depth buffer / an existing mesh.



Depth Fade
•Optimized solution (from Bart Wronski on God of War 2018):

•Modify the depth of the mesh to fade in a dithered pattern.

•e.g. if we offset the depth by up to 5cm:

• The mesh starts fading out when within 5cm of a mesh.

• The mesh is fully faded out at 0cm from a mesh.

•Conservatively modify depth to preserve early Z.

•Fade out the modify depth feature at 50m from the camera.



Note: we don’t do this in shadow maps

Depth Fade

ĤŘŲˇ ſ ₧; ŲŨ̸ ̅ ſ ĈBĈ̸ ſ ĳ „ Ĺſ ĳ ñĤĤŅĈſ Ͻ
₧ Ĺũ₧≥ª ˪ ké≥Àƒ₧Ĺũ̸ ̅ ſ ⁜₧Ĺũ₧éŲũÉˇ ЦĈģçˇ ſ ĈģĹˇ ŘkũĤŲ₧Ũˇ ſ ĈģĹˇ ŘkũĤŲ⁜₧Ĺũ₧çˇ ſ ĈģĹˇ ŘÀflŅ₧Ũˇ ſ ĈģĹˇ ŘÀflŅ⁜
₧ Ĺũ₧Ĺũſ ℝ₧̸ ŲŅĹſ ĹŲũ⁜₧Ĺũ₧_ŘŲş ˇ ŘBˇ ſ ˇ ₧ĥŘŲş ˇ ŘBˇ ſ ˇ ⁜₧Ĺũ₧flĹĈРBˇ ſ ˇ ₧НĹĈРBˇ ſ ˇ
Ͼ
Ͽ
ṝ ĤŘŲˇ ſ ǈ₧̸ ŲŅƒŲGЦĈ„ ª ₧ӡ₧ϽŨˇ ſ ĈģĹˇ ŘkũĤŲ˾ ĆŅſ ˪ çŲāĹĤЦBĈ̸ ſ ĳ „ Ĺſ ĳ éŲģŨˇ Ř₧⁖₧kũ̸ ̅ ſ ˾ éŲģŨˇ Ř˾ ХЦЯ₧⁘₧Ĺũ̸ ̅ ſ ˾ flĹĈРflĈĆſ Ųģ„ ª ⁙

₧ ĤŘŲˇ ſ ₧ŅĆˇ ŘĈ₧ӡ₧Ũˇ ſ ĈģĹˇ ŘkũĤŲ˾ ĆŅſ ˪ çŲāĹĤЦBĈ̸ ſ ĳ ª Ćˇ ŘĈ⁙

₧ ϺϺ₧Ĥˇ āĈ₧āĈ̸ ſ ĳ ₧ŅĆˇ ŘĈ₧şЦ₧āĹŅſ ˇ ũĆĈ₧ĤģŲŨ₧Ćˇ ŨĈģˇ
₧ ϺϺ₧Ų̸ ſ ĹŲũˇ ŘŘЦ₧ŅĆˇ ŘĈ₧şЦ₧ſ ĈХſ ̅ ģĈ₧Ĺũ̸ ̅ ſ
₧ ϺϺ₧Ų̸ ſ ĹŲũˇ ŘŘЦ₧āĹſ ĳ Ĉģ
₧ ˾ ˾ ˾

ṝ ĤŘŲˇ ſ ǈ₧̸ ŲŅĹſ ĹŲũBĹŅ̸ Řˇ ĆĈŨĈũſ ₧ӡ₧ɏ̸ ŲŅƒŲGЦĈ„ ª ₧ϵ₧ŅĆˇ ŘĈ⁙

ṝ ĤŘŲˇ ſ ǈ₧̸ ŲŅĹſ ĹŲũ„ ª ₧ӡ₧Ĺũ̸ ̅ ſ ˾ ≥ŲŅĹſ ĹŲũ„ ª ˾ ХЦЯ₧᷈ ₧̸ ŲŅĹſ ĹŲũBĹŅ̸ Řˇ ĆĈŨĈũſ ⁙
₧ ĤŘŲˇ ſ ℚ₧̸ ŲŅĹſ ĹŲũª ª ₧ӡ₧Ũ̅ ŘϽĤŘŲˇ ſ ℚϽ̸ ŲŅĹſ ĹŲũ„ ª ⁜₧L˾MĤϾ⁜₧НĹĈРBˇ ſ ˇ ˾ НĹĈР≥ģŲŌϾ⁙
₧ ģĈſ ̅ ģũ₧ŨĹũϽ̸ ŲŅĹſ ĹŲũª ª ˾ Я₧Ϻ₧̸ ŲŅĹſ ĹŲũª ª ˾ Р⁜₧Ĺũ̸ ̅ ſ ˾ ≥ŲŅĹſ ĹŲũ˾ ЯϾ⁙
ͻ



We often use depth fade to blend rocks against the terrain.

No Depth Fade



Depth Fade of 3cm



This is a great example of us supporting a very Maya-based workflow, just painting across the 
world, but then supporting this in game.

Ref Paint Tool
•We use vertex paint and vertex colors to blend between 

different material layers.

•As a whole level is loaded in Maya at once, we can vertex 
paint across the whole world.

•This helps blend two meshes placed next together.
• i.e. blending to the same material layer on both meshes

•“What you can do in Maya, you can do in game”

•But how does this work for instances?



Ref Paint Tool
•Problems with painting across instances:

•Need a separate data set for each copy of the instance

•When an instance changes, all vertex paint data is invalidated

• Everywhere in the world.



Ref Paint Tool
•Vertex colors are stored in a point cloud.

•If the underlying mesh changes, the painted point cloud remains the 
same.

•Projected onto each mesh at build time.
•A copy of the data for each instance.

•Causes build dependency problems:
•If an instance changes, need to rebuild vertex color data in every place it 

is used.



Skirts



Geometry



Vertex Painting



One engine I worked with, it was a feature request the rendering team to have light bulbs 
swinging. Of course, that’s something that should just be done by the content creation team, 
in engine, but in this particularly engine it was so hard as to be impossible. However, at SMS, 
adding animations is easy.

This is a simple animated asset we have in a test scene. Let’s see how easy it is to add this 
animation.

Animation
•Artists can easily animate:

•Meshes
• Transforms and visibility

•Material parameters



We first need to select the object in Maya…



Then if you look to the top right…



You’ll see the Z coordinate of the transform in red, meaning that it’s animated.



If we right click on that and open it up, we see the animation we have assigned and can edit it.



This is a pretty simple back and forth animation that we’re editing in Maya, and it comes right 
into game.

Animation



I’ve occasionally seen the attitude from artists of “well, it’s my responsibility to make this 
level look good, so I don’t care about the technical features you want to add.”

Team Culture
•Content creators are empowered to build levels.

•Content creators take responsibility for quality and 
performance.

•Tech can be viewed as a tools and support group.



But this empowerment over artists has an effect on our team structure. As artists are given 
so much control in Maya, typically an artist owns all parts of their level, from modelling to 
materials to set dressing. We do have a classic split between level design and art though – 
first level designers author sheet mesh, then hand to art. Of course there’s then plenty of 
back and forth to ensure metrics and readability are respected, plus getting good collision.

Team Structure
•Environment artists own all parts of their level.

•Set dressing.

•Modelling.

•Materials.

•Level design first author “sheet mesh” / “gray box” then 
hand to art.

•Lots of back and forth between art and level design over metrics, 
readability and collision.



The Future
Problems with Maya as an Editor and our 

plans to overcome them



Problems with Maya as an Editor
•Build times

•Performance

•Everything must go through Maya

•Dependency on a third party application



Thanks Vadim for this info!

Build Times
•Initializing the Maya library takes 5s:



Thanks Vadim for this info!

These figures are from a year or two ago, but haven’t changed much.

Build Times
•We spend ~160 hours/week to process content through the 

Maya API:



Build Times
•We already optimized searching Maya files for 

dependencies.

•“MayaNinja”:
•Our custom Maya parsing tool.

•Many times faster than using the Maya API.



Performance
•When opening a typical game scene:

•~5 minutes on initial launch

•~40 seconds on subsequent launch

• When proxies are built

• A propriety system to build proxy meshes of the scene for fast loading

•~10 seconds to load a typical ref node

•In the fastest scenario:
•1 minute for an artist to work on a small part of the level



To solve performance problems with Maya and .mb files, we don’t just have the proxy 
system. We also have this scene culler tool for animators.

Performance
•Scene culler tool:

•For animators working on cinematics.

•Cuts out the relevant portion of the .mb scene to the cinematic.

•To significantly improve load times.



Everything Goes Through Maya
•Everything in our game has to go through Maya.

•Maya isn’t always the best tool for the job.
•Houdini for procedural development.

•Rise in junior artists who know Blender.

•Simple level design work:
• Placing audio emitters.



Dependency on a Third Party Tool
•It’s unhealthy for the studio to be so dependent upon one 

third party tool

•Dependent upon Autodesk for support



OpenUSD
•OpenUSD solves many of our problems.

•Fast API

•Interoperability with many DCCs

•OpenUSD editors already exist
• e.g. NVIDIA Omniverse



We compare Maya in blue and OpenUSD in orange… in total it’s over a 7000% speed up!

OpenUSD
•The OpenUSD API is up to 70x faster than the Maya API.

•For a test scene with 1788 meshes (272k vertices, 108k indices):



Previously it was 40 seconds in the best case scenario to load the level minus any ref nodes, 
plus around 10 seconds to load an individual ref node. Often (if proxies weren’t built) it 
would take a significant amount longer.

With USD we always hit our previous best case scenario… and actually have the whole level 
loaded. And we can remove our complicated proxy system from the engine.

OpenUSD
•Opening the Maya scene mentioned earlier:

•50 seconds to load the entire level, including all ref nodes.

•No need for a proxy system.



As mentioned earlier, Maya is not the best place for many level design tasks, such as placing 
audio emitters. We’re developing an editor for those.

We preview our materials in Maya, so we need HLSL Shader Model 5.0 shaders.

PC Build & Editors
•Developing an editor but not WYSIWYG .

•Maintenance for rendering team is very high.
•Particularly for DirectX 12.

•API issues:
•DirectX12 / Shader Model 6.0 is mandatory to support PlayStation 5 

graphical features.

•Maya still requires Shader Model 5.0 shaders and DirectX 11.

•Look into MaterialX for DCC-agnostic shader/material 
support.



Summary



Conclusion
•Using Maya as an editor has heavily influenced SMS:

•Engine design and architecture

•Artist workflows

•Company culture

•Maya also has many limitations:
•The future is OpenUSD



Thanks
•SMS:

•Josh Hobson

•Vadim Slyusarev

•Mat Hendry

•Sam Sternklar

•Nathan Kennedy

•Kyle Bromley

•All past and current contributors 
to our engine 

•REAC:
•Angelo Pesce

•Stephanie Sampson

•Natalya Tatarchuk

•Michael Vance



Thank You!

@stevemcauley

Technical Director
stephen.mcauley@sony.com

Stephen McAuley

@mynameismjp

Lead Rendering Programmer
matt.pettineo@sony.com

Matt Pettineo



@ santamonicastudio @ SonySantaMonica @ santamonicastudio

We’re expanding our family across disciplines and would love 
to meet you. Please visit sms.playstation.com/careers for all 
openings or drop us a line at sms@sony.com

We’re hiring for what’s next!

http://sms.playstation.com/careers
mailto:sms@sony.com





