
2424

© REMEDY ENTERTAINMENT 2024

Modernizing geometry drawing in Alan Wake II

Tatu Aalto / R
emedy Entertainment

©
 R

E
M

E
D

Y
 E

N
TE

R
TA

IN
M

E
N

T 2024

REMEDY ENTERTAINMENT PLC.

22

33
NATIONALITIES

FOUNDED IN AUGUST

1995

HEADQUARTERS IN ESPOO

FINLAND

STUDIO IN STOCKHOLM

SWEDEN
(NASDAQ HELSINKI)

TRANSFERRED TO MAIN LIST

2022

LISTED AS PUBLIC COMPANY IN

2017
(NASDAQ FIRST NORTH)

380
EMPLOYEES

APPROXIMATELY

©
 R

E
M

E
D

Y
 E

N
TE

R
TA

IN
M

E
N

T 2024

REMEDY HISTORY

22

202220212019 2020

1996 2001 2003 20122010 2016

2023

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Talk intro

No hard science in this talk. Walk through the
engineering feat of building a new system to
rendering engine while doing game production.

How did we choose rendering technology to
improve for Alan Wake II

What was driving the design of revisited parts

How did the implementation become

Presentation
History
Art direction
Technical vision
Technical design
Dive deeper
Meshlets
Transparency

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

History

22

History: Where are we starting from

Alan Wake (2010)
- New engine and editor
- Geometry with multiple methods

- Mesh
- Terrain - dynamic tessellation
- Foliage - large amount of instances

- Lighting with additive rasterisation
- Draw call per light
- Volumetric ray marching for selected lights in pixel shader

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

History: Where are we starting from

Quantum Break (2016)
- Light access globally on GPU

- Culling in tiles
- Filling in compute shader
- Shadow and projection maps in dynamic atlases

- First version of voxel based global illumination *
- Froxel base participating media for all lights
- Geometry to support large amount of CPU filled bones
- Geometry detail level generation with Simplygon

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

* Multi-Scale Global Illumination in Quantum Break
Ari Silvennoinen, Ville Timonen
Advances in Real-Time Rendering SIGGRAPH 2015

History: Where are we starting from

Control (2019)
- Material access globally on GPU
- Material data changed as part of editor unification
- Geometric destruction with skinned geometry
- Second version of voxel based global illumination *
- Raytracing

- Static and skinned geometry
- Simplified material model

- Cleaned out custom terrain and foliage geometry rendering

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

* Practical indirect lighting in Control
Janne Pulkkinen, Tatu Aalto
Syysgraph 2019

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Art direction

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

3

Cauldron LakeReturn

Primordial rainforest and a deep volcanic caldera lake.
Ancient, mossy and mythological. Heart of darkness.
Minimal human influence in the area. Few older rentable
cabins and a ranger station has been fenced off by Federal
Bureau of Control.

Dark greens and rusty browns.

The Revenant

Storm King Ranger Station
https://www.loc.gov/item/wa0135/
via https://picryl.com

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Art direction: Open world vibe with limited access

22

18

Real-world scale

In addition to photogrammetry, we need to pay close
attention to the overall scale of the environments. Humans
are insignificant next to the vast and remote forests of Pacific
Northwest. Fear of getting lost in the wilderness should be a
constant companion.

Nature dominates here.

Environments

Leave No Trace (2018)

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Art direction: Open world vibe with limited access

22

18

Real-world scale

In addition to photogrammetry, we need to pay close
attention to the overall scale of the environments. Humans
are insignificant next to the vast and remote forests of Pacific
Northwest. Fear of getting lost in the wilderness should be a
constant companion.

Nature dominates here.

Environments

Leave No Trace (2018)

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Technical vision

22

Technical limitation: Geometry drawing

Close to limits with scaling draw call amounts up
- CPU based occlusion only from static geometry
- Instancing helps but API bottleneck is out of our hands
- Geometry use in effect passes even heavier
- Control is around 2k instanced draw calls (5-6k non instanced)
- Control is 30 fps, AW2 has 30 and 60 fps modes

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Foliage movement from original Alan Wake
- Vertex shaders based wobbling
- Deep hierarchies painful if not impossible
- Lacking integration with raytracing
- Content side control limited to adjusting very few parameters

Bone updates from physics and animation on CPU
- Hitting memory bandwidth issues with destruction on Control
- No clear way to expose proper control to content

Technical limitation: Geometry deformation

Technical limitation: Materials

Inflexible material data blocking upgrades
- Unification of material and other editor data caused serious issues
- Complex terrain material blending required updated parameterisation
- Patching between data versions error prone and time consuming
- Material parameterisation declared in engine code

Very few materials but no content side customisation support
- Control shipped with 14 materials
- Piling game specific shaders next to engine code becoming an issue
- No place to store per mesh data for node based effect system

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Technical vision: Materials

Describe data and use of it in Lua instead of C++
- Data and UI definition for what user edits
- Versioning and patching in the same file

Customise for specific use cases
- GPU packing for buffers, bindings for textures and buffers
- Declaration of rendering passes

Extend conversion
- Define texture channel packing
- Request normal variance baking to roughness map

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Technical vision: Geometry drawing

Move to GPU dispatch
- No custom systems for grass or foliage
- Performance bottleneck to be on our side

Cull on GPU
- Occlusion from alpha tested and deformed geometry
- Accuracy close to pixel granularity

Matching geometry on raytracing and rasterisation
- Preserve all the detail that that is allowed by raytracing
- Deformed geometry written to memory for BVH building

Discrete detail level
- Existing pipelines with Simplygon
- Practically only option with current raytracing APIs for matching geometry

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Technical vision: Geometry deformation

Geometry deformation is shared between ray tracing and rasterisation
- Compute shader access to bone array
- Compute shader writes deformed vertices to memory

Deformation shaders are content
- Access to data produced by node graph based effect system
- (Access to custom bone data)

Scale to fill GPU
- Target to million bones

Topic beyond this talk
- Watch: Large Scale GPU-Based Skinning for Vegetation in 'Alan Wake 2',

GDC 2024 by Kiya Kandar

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Technical design
Geometry

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: State changes

Mesh on disk
- Contains N discrete detail levels
- Each detail level has M clusters with material

Cluster
- Single draw call in out setup
- Smallest slice of geometry that can define rendering

state
- Perfect candidate for something that needs split in

indirect rendering

Draw call order
- State changes drive rasterisation order
- This is not going to directly work with transparency

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: Cluster

Engine
- Array of clusters that can be drawn
- 32b persistent handle for each cluster
- Mesh on disk typically contains no more than tens

of clusters

struct ClusterData
{

vertexBuffer
indexBuffer
instanceHandle
materialHandle
…

}

In this location we have
- 225k clusters in engine

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: Rendering passes

Frame rendering contains multiple passes
- Depth (shadows, effects, UI), Geometry Buffer
- Character light, Emission, Transparent, etc

Many passes share visibility but not necessarily pipeline
state
- Only few variations of depth typically (alpha testing,

sidedness)
- More variations for geometry buffer
- Some passes very rarely used
- Each pass contains buckets that can change

pipeline state

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: Rendering passes

Engine
- Array of clusters that can be drawn
- 32b persistent handle for each cluster
- Mesh on disk typically contains no more than tens

of clusters

Set
- Array of passes with bucket per pipeline state
- Set of clusters with persistent bucket index per pass

In this location we have
- 225k clusters in engine
- 197k clusters in Opaque Set
- 16 Sets (including dev time debug)
- 3 passes in Opaque Set (depth, gbuffer, visibility)
- 40k active clusters in each pass of Opaque Set

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: Visibility

Visibility per cluster for a Set
- Single Set can be associated with multiple

visibilities (for example shadow)
- Share culling result between depth, geometry and

visibility buffer
- Configure culling based on use case
- Share occlusion data between Sets

Each cluster has Bucket index for each pass
- Bucket equals to single CPU draw call
- Passes in Set can have different Bucket counts

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Geometry: Rendering passes

Engine
- Array of clusters that can be drawn
- 32b persistent handle for each cluster
- Mesh on disk typically contains no more than tens of

clusters

Set
- Array of passes each containing array of buckets
- Selection of clusters that have persistent bucket per pass

Set Visibility
- Visibility of clusters in Set
- Visible clusters per bucket for each pass

In this location we have
- 225k clusters in engine
- 197k clusters in Opaque Set
- 16 Sets (including dev time debug)
- 3 passes in Opaque Set (depth, gbuffer, visibility)
- 40k active clusters in each pass of Opaque Set
- 5k visible clusters in Opaque Set

22

Geometry: Compatibility

Depth based draw call sorting is impractical
- Overdraw is not eliminated by depth testing
- Alpha blended transparency will need something

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Technical design
Shaders

22

Shaders: Overview

Shader is two files
- Shader code in <shader_name>.shader
- Related scripts in <shader_name>.lua

Shader code is pure HLSL

Script file is pure Lua
- Data declarations
- Script related to shader
- Defines what shader can be used for

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Shaders: Usage and properties

Data version is used for patching properties

Define how the shader can be used

Properties can be exposed to user or used
internally by engine

Patching is based on version number
- Executed before asset conversion (C++) and

in editor (C#)
- Can patch to certain version of other shader

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Shaders: Techniques

Shader scripts also define techniques
- Entry point for each shader type
- Optional permutations based on properties
- Vertex shader is used when mesh shaders

are not supported

Permutations supported on engine provided
shaders
- Alan Wake 2 has about 2500 shaders
- Minimize the amount to keep compile times

and pipeline state changes low
- Flat list, avoid programmatic generation
- Prefer dynamic branching over highly

specific compile time feature set

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Shaders: Declare passes

Shader scripts declare passes for indirect
drawing
- Passes are persistent for an Set
- New Set can be created on fly

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Shaders: Selecting pass for cluster

Select correct pass for each Cluster
- Based on shader and geometry properties

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Dive deeper

22

Visibility: Culling mesh clusters

Cluster Set declares passes that have multiple pipeline states to render
- Each pipeline state is a single draw call that has index
- Example Cluster Sets we have: Opaque, Emission, Transparent, Directional

light shadow, Character light, …

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Set Emission

Pass Emission 1 Alpha Test ON 2 Alpha Test OFF

Set Opaque

Pass Depth 1 Alpha Test ON 2 Alpha Test OFF

Pass G-Buffer 3 Hair 4 Eye 5 Standard

Visibility: Culling mesh clusters

Culling is essentially multilevel compaction of geometry clusters
- Engine: All clusters
- Set: Selection of clusters (CPU)
- Visibility: Culled clusters (GPU)

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Visibility: Culling mesh clusters

Culling is essentially multilevel compaction of geometry clusters
- Engine: All clusters
- Set: Selection of clusters (CPU)
- Visibility: Culled clusters (GPU)

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Visibility: Culling mesh clusters

Culling is essentially multilevel compaction of geometry clusters
- Engine: All clusters
- Set: Selection of clusters (CPU)
- Visibility: Culled clusters (GPU)

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Visibility: Culling mesh clusters

Opaque pass
- Two passes: Depth, G-Buffer
- Five draw calls in total

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Set Opaque

Pass Depth 1 Alpha Test ON 2 Alpha Test OFF

Pass G-Buffer 3 Hair 4 Eye 5 Standard

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Visibility: Culling mesh clusters
©

 R
E

M
E

D
Y E

N
TE

R
TA

IN
M

E
N

T 2024

22

Set Opaque

Pass Depth 1 Alpha Test ON 2 Alpha Test OFF

Pass G-Buffer 3 Hair 4 Eye 5 Standard

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Depth G-Buffer

Pass 1 2 3 4 5

Collect visible geometry clusters to draw calls

Visibility: Culling mesh clusters

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Depth G-Buffer

Pass 1 2 3 4 5

Visible 3 7 8 3 7 8

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Previous frame visibility of each geometry cluster

Visibility: Culling mesh clusters

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Depth G-Buffer

Pass 1 2 3 4 5

Visible 3 7 8 3 7 8

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Collect geometry clusters that have become visible

Visibility: Culling mesh clusters

Depth G-Buffer

Pass 1 2 3 4 5

Visible 3 7 8 3 7 8

Previously Culled 3 3

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Store visibility of each geometry cluster

Visibility: Culling mesh clusters

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

Depth G-Buffer

Pass 1 2 3 4 5

Visible 3 7 8 3 7 8

Previously Culled 3 3

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Count buffer
- Count of draw calls per pass (five passes in

this example)
- Separate counts for Visible and Previously

culled

Visible
- All visible geometry
- Use if potential occluders from previous

frame are not filled
- Use on passes that were not used for

occlusion. In our case G-Buffer for instance

Previously culled
- All the geometry that occluder guess did not

contain.
- Use to fill in geometry that was not treated

as occluder

Visibility: Draw calls for vertex shader

See more detailed explanation in:

GPU-Driven Rendering Pipelines (SIGGRAPH 2015)
Sebastian Aaltonen, Ulrich Haar

https://advances.realtimerendering.com/s2015/

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Add in meshlet support

22

Meshlet: Connection to Vertex Shaders

The setup for Meshlet drawing
- Reuse everything presented before apart from final draw call buffers
- Resolve and store visibility of each meshlet for better occluder guess
- Mangle geometry processing shaders to work with Vertex and Meshlet path

Additional data we need for Mesh shader
- Instance handle for geometry cluster (32b)
- Meshlet index (32)

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Meshlet: Meshlet visibility

First culling pass
- Cull geometry clusters in Set
- Compute shader thread per geometry cluster
- Input and culling is same as with Vertex shader
- Output handles to visible geometry clusters (32b)

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Engine 1 2 3 4 5 7 8

Set 1 3 4 7 8

Visibility 3 7 8

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Meshlet: Meshlet visibility

Second culling pass
- Cull meshlets of each visible geometry cluster
- Compute shader group per geometry cluster (256

threads)
- Thread per meshlet
- Use wave operations to read shared geometry

cluster data
- Cull with bounds of meshlet instead of geometry

cluster

Output data is 64b per meshlet
- Amount of memory needed in worst case is a lot
- We read visible meshlet counts asynchronously

back from GPU to CPU

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Meshlet: Shader

Share geometry processing for Mesh and Vertex
shader
- Wrap vertex manipulation and output to

struct
- Generate shader entry point for Mesh and

Vertex shader with macro
- Separate macro for additional triangle

culling
- More details about mesh shader use and

culling in our Digital Dragons presentation

22

GPU-driven Rendering with Mesh Shaders in Alan Wake 2
Erik Jansson

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Transparency

22

Transparency: What to support

Combination of different resolutions and techniques
- Three resolutions: full, half, quad
- Transparent geometry, particles, custom effects
- Froxel (frustum fit voxels) density written by particles

Fix ordering issues caused by rendering to many targets

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Transparency: Options

Megashader - Sort on GPU
- Simple for basic implementation
- Merge with content side custom effects
- Won’t fix multi-resolution rendering

Raytracing
- Amount of transparent geometry is relatively low
- Would allow cool new stuff
- Custom effects, multi-resolution, performance?

Order independent methods

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Transparency: Order independent

Potential methods
- Weighted Blended OIT blending is not visually good enough
- Stochastic raised concerns about noise
- Moment Based OIT seemed promising and easy to test out
- Fourier Opacity expected to be worse than Moment Based

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Weighted Blended Order-Independent Transparency
Morgan McGuire, Louis Bavoil
Stochastic Transparency
Eric Enderton, Erik Sintorn, Peter Shirley, David Luebke
Moment-Based Order-Independent Transparency
Cedrick Münstermann, Stefan Krumpen, Reinhard Klein,
Christoph Peters
Fourier Opacity Mapping
Jon Jansen, Louis Bavoil

https://jcgt.org/published/0002/02/09/
https://luebke.us/publications/StochasticTransparency_I3D2010.pdf
https://dl.acm.org/doi/10.1145/3203206
https://volumetricshadows.wordpress.com/wp-content/uploads/2011/06/fourier-opacity-mapping.pdf

Transparency: Moment Based

Two pass method
- Construct depth based transmittance
- Additive blend with precomputed transmittance

Multi-resolution
- Fill each transparent draw to single target
- Combine different resolutions to contains each other
- Run additive passes to many targets
- Upscale color targets from low to high

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

Transparency: Volume

Rendering Quantum Break
Tatu Aalto

Volume density is preprocessed into scatter and transmittance
- Accumulate density from front to back and store resulting inscatter

and transmittance for depth

Combine opaque, transparent and volume
- Volume transmittance applied on top of MBOIT transmittance when

filling second pass transparent color
- Volume inscatter affected by transparent transmittance and applied

on top of opaque

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

22

https://www.youtube.com/watch?v=nVDGKgeUq4g

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Closing words

22

©
 R

E
M

E
D

Y E
N

TE
R

TA
IN

M
E

N
T 2024

Thanks

22

Art Direction
Janne Pulkkinen

Code
Lauri Aho
Lea Bruder
Daniel Forsberg
Petri Häkkinen
Erik Jansson
Kiya Kandar
Mikko Kallinen
Dustin Meijer
Markus Pyykkö
Timo Wiren

