
Ray Tracing in Diablo IV
Kevin Todisco

Principal Software Engineer, Blizzard Entertainment

Rendering Engine architecture conference 2024

Agenda

● Phases of Ray Tracing Development
● Constraints and Strategy
● Implementation Details and How Challenges Shape Architecture
● Fitting to the Content
● Summing Up

Rendering Engine architecture conference 2024

Chronology

● Began as engineering R&D with no release timeline
● Sat latent for a while
● Picked up once release window came into focus

○ Plus, partnership with NVIDIA

● Goes from side project to "how do we ship this?"

● Nearly all of what's discussed here is from that second stage.

Decision Making

Rendering Engine architecture conference 2024

Art Direction

Art Support

Performance
Headroom

Team
Experience

Time

What to ray trace?

Rendering Engine architecture conference 2024

Art Direction and Support

● Not directed with ray tracing in mind
● Diablo IV ships on a variety of hardware

○ PC min spec is a GTX 660 or R9 280
○ Xbox One and PS4

● Want to enhance visuals, but not have a new look
● Not wanting to change content

○ Good from the standpoint of asset management and maintenance
○ Challenge from the standpoint of implementation

Rendering Engine architecture conference 2024

Time and Experience

● No prior ray tracing technology in the stack
○ Good references, but no implementation

● No prior ray tracing API experience on the team
● Not just one API to consider

○ DXR (PC, Xbox) and PSR (PS5)
● Defer release until after initial launch

Rendering Engine architecture conference 2024

Performance Headroom

Xbox One PS4 Xbox Series X PS5 PC

Framerate 30 30 60 60 30-60+

Output
Resolution

1080p 1080p 2160p 2160p 720p -
2160p+

Quality Low Low Medium Medium Low - Ultra

Rendering Engine architecture conference 2024

Performance Headroom

Xbox One PS4 Xbox Series X PS5 PC

Framerate 30 30 60 30 60 30 30-60+

Output
Resolution

1080p 1080p 2160p 2160p 2160p 2160p 720p -
2160p+

Quality Low Low Medium High Medium High Low - Ultra

Ray
Tracing

No No No Yes No Yes No - Yes

Performance Quality

Rendering Engine architecture conference 2024

Impact

● Solves the most of Art's problems
○ Without changing too much

● Enhances the visuals of the game
○ Without changing too much

● Maximizes cost-to-benefit ratio
○ While changing enough to be an upgrade

Rendering Engine architecture conference 2024

Feature Set

● Tried-and-true techniques: shadows and reflections
● Lowers R&D cost
● Shadows

○ Thematically relevant
● Reflections

○ Straightforward to implement
● Still need to account for variety of specs

Rendering Engine architecture conference 2024

Feature Set

Shadows Low Medium High

Directional Lights ✔ ✔ ✔

Player Light ✖ ✔ ✔

Local Lights ✖ ✖ ✔

Reflections Low High

Roughness-based multi-ray ✖ ✔

Simple blur ✔ ✖

High Quality Denoise ✖ ✔

Implementing a Foundation

Rendering Engine architecture conference 2024

RuntimeData DefinitionTools

DCC Tools

Art

Shader
Graph

Geometry
Model

Asset
Streaming

Command
Generation

Memory
Management

Frame
Layout

Raster
Techniques

Resource
Binding

Shader
Model

Build
Pipeline

Rendering Engine architecture conference 2024

RuntimeData DefinitionTools

DCC Tools

Art

Shader
Graph

Geometry
Model

Asset
Streaming

Command
Generation

Memory
Management

Frame
Layout

Raster
Techniques

Resource
Binding

Shader
Model

Build
Pipeline

Rendering Engine architecture conference 2024

RuntimeData DefinitionTools

DCC Tools

Art

Shader
Graph

Geometry
Model

Asset
Streaming

Command
Generation

Memory
Management

Frame
Layout

Raster
Techniques

Resource
Binding

Shader
Model

Build
Pipeline

Rendering Engine architecture conference 2024

Shader Implementation Details

● No bindless paradigm.
○ Hit group textures use register space 1
○ Vertex and index buffers start at slot 52, after raster bindings

● Vertex processing is done on async compute
○ Results are cached
○ Two classes of assets: skinned actors and SpeedTree
○ This was (conveniently) done independent of ray tracing
○ SpeedTree precompute is only on when ray tracing is on
○ Increases required memory

Rendering Engine architecture conference 2024

Shader Graphs

Output Bindings

Input Bindings
Interpolators

Shader Declaration

Rendering Engine architecture conference 2024

Shader Graphs

Hit Group Input Bindings

Ray trace output target

Barycentric Calculations

Texture Sampling

Shader Type
(AnyHit, ClosestHit)

Output Bindings

Input Bindings
Interpolators

Shader Declaration

Rendering Engine architecture conference 2024

Rendering Engine architecture conference 2024

https://docs.google.com/file/d/1ozSz5B0c92bcvqOvNbhem9MJdJSnZQ-c/preview

Rendering Engine architecture conference 2024

Render Work Generation

● 1 render thread, 4 render workers
○ Work is separated manually among workers
○ 1 worker for early-frame work like shadows, 1 for gbuffer, 1 for post, etc.

● Each worker has multiple state machines
○ Global state describing high-level state of the graphics pipe
○ Thread local state describing low-level details like active command lists and

bound resources
● Scene traversal modifies high-level and low-level state
● Issuing a draw translates state into command list ops
● State modification is a very hot path!

● Ray tracing work is constructed similarly

Rendering Engine architecture conference 2024

Building RT Shader Tables

● New low-level thread-local RT state is added per worker
○ Tracks bound hit-group resources, PSO build, shader binding tables, and the

active top-level acceleration structure
● A top-level acceleration structure (TLAS) is built from beginning to

end on one render worker.
○ One TLAS can not be built by multiple workers

● PSO creation is deferred, and incremental build is used on
supported platforms

Rendering Engine architecture conference 2024

Overview of Scene Traversal

● Visibility tests bucket objects into different display lists
○ Display lists are enumerated, named lists, max of 64
○ Examples include Gbuffer, Transparent, Shadows, Reflections

● Display lists are iterated over to issue pipeline state and draw
commands

● For ray tracing, each technique is executed in similar steps
○ GatherShaderLibraries - Assemble the pipeline object
○ GatherInstances - Assemble the top level acceleration structure
○ TraceRays

● Gathering libraries and gathering instances must behave identically

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Hit Group 1 BVH 1

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Hit Group 1 BVH 1

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Hit Group 1 BVH 1

Hit Group 2 BVH 2

Rendering Engine architecture conference 2024

SBT TLAS

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SM

Example Traversal

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Hit Group 1 BVH 1

Hit Group 2 BVH 2

Hit Group 3

Hit Group 4

Hit Group 5

Hit Group 6

BVH 3

BVH 4

BVH 5

BVH 6

Hit Group … BVH …

Rendering Engine architecture conference 2024

Improving Performance

● Raytracing involves many more objects than primary game camera
visibility
○ Objects behind the camera, outside the main frustum

● This puts a strain on our existing architecture
○ Our hot path on the CPU becomes even hotter.

● Changing architecture would be… massive

● Don't change the architecture, change the hit count.

Rendering Engine architecture conference 2024

Traverse Object0

AddInstance()

Traverse Object1

AddInstance()

Traverse Object2

AddInstance()

…

SBT TLASSM

Improving Performance

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

Hit Group 1 BVH 1

Hit Group 2 BVH 2

Rendering Engine architecture conference 2024

Traverse Object0

Count Object1

Count Object2

AddInstances()

…

SBT TLASSM

Improving Performance

Shader State

Shader Constants

Transform Matrices

Textures

Vertex Buffers

Index Buffers

Texture Constants

Light Probes

Texture Matrices

Sampler State

Hit Group 0 BVH 0

BVH 1

BVH 2

Rendering Engine architecture conference 2024

Culling

● Both techniques started with naive area-based culling
● Game camera is fixed

○ Can take advantage of this for reflections
○ But…

● Still need to consider in-game cutscenes
● We forgo a specialized solution and instead choose a generic one

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Culling

Rendering Engine architecture conference 2024

Improving Performance

● Savings depend heavily on scene construction, but…
● Reflections

○ Saved an average of 2000 objects from TLAS
○ Anywhere from 20-33% reduction

● Shadows
○ Saved anywhere from 14-20ms of CPU time (i9 9900KF)
○ Most saving in outdoor daytime scenes with no actual positional lights

■ Gracefully handles this content-specific scenario
○ Still significant in high density areas like cities

Rendering Engine architecture conference 2024

Appearance

BVH Data

Rendering Engine architecture conference 2024

Index DataVertex Data

Appearance

BVH Data

Rendering Engine architecture conference 2024

Appearance

Vertex Data Index Data

SubObject SubObject SubObject SubObject SubObject SubObject

BVH Data

Rendering Engine architecture conference 2024

BVH Buffer

Vertex Data

SubObject SubObject SubObject SubObject SubObject SubObject

BVH Data

Rendering Engine architecture conference 2024

Vertex Data

SubObject SubObject SubObject SubObject SubObject SubObject

BVH Data

BVH Buffer

Rendering Engine architecture conference 2024

● Data augmentation is a size and offset.
● The issue here is this data is immutable.

struct SubObject
{
 // Existing fields.
 ...

 // New RT fields.
 uint32 bvhOffset; // Offset into larger BVH buffer.
 uint32 bvhSize; // Cached size of the BVH.
};

BVH Data

Rendering Engine architecture conference 2024

● Parent structure manages monolithic buffer
● Ad-hoc support for compaction
● Optimizing for memory gets difficult

BVH Data

struct BottomAcceleration
{
 Buffer* bvhBuffer;

 // New offset data after compaction.
 map<uint32, uint32>* compactionInfo;
 bool compacted;
 bool allowUpdate;
};

Rendering Engine architecture conference 2024

BVH Compaction Review

● Initially, size estimated and upper bound allocation made.

● At build completion, query the real build size.

● Create a new allocation and copy, discard the original.

1 MB

400 KB

400 KB

400 KB
X

Saved 60%!

Rendering Engine architecture conference 2024

BVH Memory

● Initial implementation, all eligible assets included: 5+ GB BVH data
○ That probably won't work :)
○ Note: vast majority of this is SpeedTree, because instancing

● Compaction is our friend
● But it's not well-supported by the architecture

○ Not every class of asset can be compacted
● How so?

Rendering Engine architecture conference 2024

Data Tracking

● Recall: the BVH offset and size on a SubObject is immutable.
○ Immutability is already being violated when populated at load time.

● But, still used to point to BVH location in memory
● Time to refactor.

Geometry Representation

Low-Level BVH Management

No visibility into BVH
workings.

Can't manipulate data
above.

Rendering Engine architecture conference 2024

 struct SubObject
 {
 // Existing fields.
 ...

 // New RT fields.
- uint32 bvhOffset; // Offset into larger BVH buffer.
- uint32 bvhSize; // Cached size of the BVH.
+ uint32 segment; // Index into array of sub-BVHs.
 };

BVH Data

Rendering Engine architecture conference 2024

 struct BottomAcceleration
 {
 Buffer* bvhBuffer;

- // New offset data after compaction.
- map<uint32, uint32>* compactionInfo;
+ // Internal tracking of sub-BVHs.
+ uint32* segmentOffsets;
+ uint32 segmentCount;
 bool compacted;
 bool allowUpdate;
 };

BVH BufferbvhBuffer

segmentOffsets

BVH Data

Rendering Engine architecture conference 2024

● Every BVH must be built and size queried to compact the larger
buffer.

✔

BVH Data

BVH Buffer

✔ ✔ ✔ ✔ ✔

Rendering Engine architecture conference 2024

● Every BVH must be built and size queried to compact the larger
buffer.

✔

✔

BVH Data

BVH Buffer

✔ ✔ ✔ ✔ ✔

Rendering Engine architecture conference 2024

● Every BVH must be built and size queried to compact the larger
buffer.

● If only one isn't, compaction can't happen.

✔

✖

BVH Data

✖

BVH Buffer

✔ ✔ ✔✔

Rendering Engine architecture conference 2024

BVH Buffer

● Every BVH must be built and size queried to compact the larger
buffer.

● If only one isn't, compaction can't happen.
● SubObject structure supports variable looks for assets

○ Not all SubObjects will be instantiated!

✔

✖

BVH Data

✖✔ ✖✖✔

Rendering Engine architecture conference 2024

+struct BLAS
+{
+ Buffer* bvh;
+ bool compacted;
+};

 struct BottomAcceleration
 {
 // Internal tracking of sub-BVHs.
- uint32* segmentOffsets;
+ BLAS* subBVHs;
 uint32 segmentCount;
- bool compacted;
 bool allowUpdate;
 };

BVH Buffer

BVH Data

Rendering Engine architecture conference 2024

+struct BLAS
+{
+ Buffer* bvh;
+ bool compacted;
+};

 struct BottomAcceleration
 {
 // Internal tracking of sub-BVHs.
- uint32* segmentOffsets;
+ BLAS* subBVHs;
 uint32 segmentCount;
- bool compacted;
 bool allowUpdate;
 };

BVH BVH BVH BVH BVH

BVH Data

Rendering Engine architecture conference 2024

Platform Memory

● PC: buffers have min size of 64K
○ BVHs are typically much smaller than that
○ Pay the full price for each BVH created

● Bad for performance too
● Enter paging.

● NVIDIA RTX Memory Utility
○ https://github.com/NVIDIAGameWorks/RTXMU
○ Easy to integrate
○ Custom backend supports our low-level API abstraction layer

https://github.com/NVIDIAGameWorks/RTXMU

Rendering Engine architecture conference 2024

 struct BLAS
 {
- Buffer* bvh;
+ rtxmu::SubAllocation bvh;
 bool compacted;
 };

 struct BottomAcceleration
 {
 // Internal tracking of sub-BVHs.
 uint32* segmentOffsets;
 BLAS* subBVHs;
 uint32 segmentCount;
 bool compacted;
 bool allowUpdate;
 };

BVH Data

Rendering Engine architecture conference 2024

● Way better, but still a bit high.
● What other architectural components might be problematic?

BVH Memory

5.0+ GB 🠆 1.5+ GB

Rendering Engine architecture conference 2024

Asset Streaming

● Streaming distance in the game is large
○ Often larger than TLAS bounds

● Observation: animated objects only update BVH when added to a
TLAS

● Solution: defer allocation from Load() to Build()
○ Deallocate when not used in a TLAS

● More maturity of the design made this a much faster change

1.5+ GB 🠆 250 MB

Rendering Engine architecture conference 2024

Consoles

● PS5 and Xbox both offer BVH builds offline
○ Better size and trace efficiency

● We build all static geometry BVH offline
○ Total of about 5GB data when compressed
○ Serialized as a data blob at end of Appearance data file

● Also does not use RTXMU, favors existing memory manager

Appearance Data Vertex/Index Data

Appearance Data Vertex/Index Data BVH Data

Rendering Engine architecture conference 2024

Compaction of Dynamic BVH

● Misconception that this isn't possible
○ Update adjusts bounding box extents, while refit rebuilds hierarchy

● However, tradeoff with build quality
○ Quality drifts with each update

● Absorb degraded trace cost or compact more frequently?

● Ultimately didn't ship dynamic compaction.
○ Good area for future work in our ray tracing implementation

Rendering Engine architecture conference 2024

Implementation Recap

● Design of the engine dictates ray tracing technical design
○ But it may not be the most efficient

● Ray tracing paradigms inform new engine paradigms
● Design maturity made future changes faster and easier
● Pros of BVH architecture

○ Intuitive
○ Encapsulated
○ Memory efficient
○ Flexible

 struct BLAS
 {
 rtxmu::SubAllocation bvh;

 uint32 buildSize;
 uint32 lastUsedFrame;

 bool dynamic : 1;
 bool compacted : 1;
 bool offline : 1;
 };

Preserving Content

Rendering Engine architecture conference 2024

Rendering Engine architecture conference 2024

Rendering Engine architecture conference 2024

[image here of light leaking]

Rendering Engine architecture conference 2024

[image here of light leaking]

Rendering Engine architecture conference 2024

[image of changing shadow softness and shape]

Rendering Engine architecture conference 2024

[image of changing shadow softness and shape]

Rendering Engine architecture conference 2024

https://docs.google.com/file/d/1Hwo-0QoEOGDx6Xnt0z1BhFzfBXbshx4q/preview

Rendering Engine architecture conference 2024

[same content with raytracing on and no shadow popping]

https://docs.google.com/file/d/1I5bL1mXmtJkIksKF8mbzpvTH_3ZbxZCf/preview

Rendering Engine architecture conference 2024

[video of VATs]

https://docs.google.com/file/d/16uEg0GPggajUhm0N_VBADiuZlA5iQI2U/preview

Rendering Engine architecture conference 2024

[image of changing shadow softness and shape]

Rendering Engine architecture conference 2024

[image of the player in a dark area, highlight the player shadow]

Rendering Engine architecture conference 2024

[gif comparing original player shadow to PCSS filter shadow]

Rendering Engine architecture conference 2024

Renderable Types

Directional Shadows Local Shadows Reflections

Opaque Objects ✔ ✔ ✔

Player ✔ ✖ ✔

SpeedTree ✔* ✔* ✔*

Particles ✖ ✖ ✔

Decals ✖ ✖ ✖

VAT ✖ ✖ ✖

* Only on PC

Rendering Engine architecture conference 2024

[image of volumetric fog appearing in interiors]

Rendering Engine architecture conference 2024

Hybrid Shadows

● Require three maps
○ Ray traced shadow map (done in screen space)
○ Raster shadow map of non-raytraced objects
○ Raster shadow map of all objects

● An object is considered hybrid if it can be raytraced.
● An object is considered non-hybrid if it can only be rastered.

● We're not going to consider cached shadow maps and static vs.
dynamic objects.

Rendering Engine architecture conference 2024

Hybrid Shadows

Hybrid Non-hybrid

Combined

Rendering Engine architecture conference 2024

Hybrid Shadows

Ray traced light:

min(,) and

Non-ray traced light or Volumetrics:
Non-hybrid Combined

Combined

Rendering Engine architecture conference 2024

Summing Up

● Visual Impact
● Areas for Improvement
● Naive design is costly

○ But would that really change if designed for ray tracing?
● Conceptual challenges permeate down to technology
● Foundational work is costly

Rendering Engine architecture conference 2024

Thank You

● Keven Cantin
● Michael Bukowski
● John Buckley
● Samuel Delmont
● Jon Lee
● Zach Vinless
● Alexander Demyanenko
● Justin Williams
● Fernando Urquijo
● Ben Hutchings

● Gustavo Samour Lopez
● Charles Zhang
● Zach Schecter
● Joel Peters
● Kevin Bell
● Chad Layton
● Lorenzo Di Spina
● Alex Mueller
● REAC Organizers

Questions?

@kevintodisco

Questions fielded by Keven Cantin - Thanks Keven!

