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● Phases of Ray Tracing Development
● Constraints and Strategy
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● Summing Up
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Chronology

● Began as engineering R&D with no release timeline
● Sat latent for a while
● Picked up once release window came into focus

○ Plus, partnership with NVIDIA

● Goes from side project to "how do we ship this?"

● Nearly all of what's discussed here is from that second stage.



Decision Making
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Art Direction and Support

● Not directed with ray tracing in mind
● Diablo IV ships on a variety of hardware

○ PC min spec is a GTX 660 or R9 280
○ Xbox One and PS4

● Want to enhance visuals, but not have a new look
● Not wanting to change content

○ Good from the standpoint of asset management and maintenance
○ Challenge from the standpoint of implementation
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Time and Experience

● No prior ray tracing technology in the stack
○ Good references, but no implementation

● No prior ray tracing API experience on the team
● Not just one API to consider

○ DXR (PC, Xbox) and PSR (PS5)
● Defer release until after initial launch
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Performance Headroom

Xbox One PS4 Xbox Series X PS5 PC

Framerate 30 30 60 60 30-60+

Output
Resolution

1080p 1080p 2160p 2160p 720p - 
2160p+

Quality Low Low Medium Medium Low - Ultra
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Performance Headroom

Xbox One PS4 Xbox Series X PS5 PC

Framerate 30 30 60 30 60 30 30-60+

Output
Resolution

1080p 1080p 2160p 2160p 2160p 2160p 720p - 
2160p+

Quality Low Low Medium High Medium High Low - Ultra

Ray 
Tracing

No No No Yes No Yes No - Yes

Performance Quality
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Impact

● Solves the most of Art's problems
○ Without changing too much

● Enhances the visuals of the game
○ Without changing too much

● Maximizes cost-to-benefit ratio
○ While changing enough to be an upgrade
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Feature Set

● Tried-and-true techniques: shadows and reflections
● Lowers R&D cost
● Shadows

○ Thematically relevant
● Reflections

○ Straightforward to implement
● Still need to account for variety of specs
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Feature Set

Shadows Low Medium High

Directional Lights ✔ ✔ ✔

Player Light ✖ ✔ ✔

Local Lights ✖ ✖ ✔

Reflections Low High

Roughness-based multi-ray ✖ ✔

Simple blur ✔ ✖

High Quality Denoise ✖ ✔



Implementing a Foundation
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Shader Implementation Details

● No bindless paradigm.
○ Hit group textures use register space 1
○ Vertex and index buffers start at slot 52, after raster bindings

● Vertex processing is done on async compute
○ Results are cached
○ Two classes of assets: skinned actors and SpeedTree
○ This was (conveniently) done independent of ray tracing
○ SpeedTree precompute is only on when ray tracing is on
○ Increases required memory
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Shader Graphs

Output Bindings

Input Bindings
Interpolators

Shader Declaration
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Shader Graphs

Hit Group Input Bindings

Ray trace output target

Barycentric Calculations

Texture Sampling

Shader Type
(AnyHit, ClosestHit)

Output Bindings

Input Bindings
Interpolators

Shader Declaration
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https://docs.google.com/file/d/1ozSz5B0c92bcvqOvNbhem9MJdJSnZQ-c/preview
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Render Work Generation

● 1 render thread, 4 render workers
○ Work is separated manually among workers
○ 1 worker for early-frame work like shadows, 1 for gbuffer, 1 for post, etc.

● Each worker has multiple state machines
○ Global state describing high-level state of the graphics pipe
○ Thread local state describing low-level details like active command lists and 

bound resources
● Scene traversal modifies high-level and low-level state
● Issuing a draw translates state into command list ops
● State modification is a very hot path!

● Ray tracing work is constructed similarly
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Building RT Shader Tables

● New low-level thread-local RT state is added per worker
○ Tracks bound hit-group resources, PSO build, shader binding tables, and the 

active top-level acceleration structure
● A top-level acceleration structure (TLAS) is built from beginning to 

end on one render worker.
○ One TLAS can not be built by multiple workers

● PSO creation is deferred, and incremental build is used on 
supported platforms
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Overview of Scene Traversal

● Visibility tests bucket objects into different display lists
○ Display lists are enumerated, named lists, max of 64
○ Examples include Gbuffer, Transparent, Shadows, Reflections

● Display lists are iterated over to issue pipeline state and draw 
commands

● For ray tracing, each technique is executed in similar steps
○ GatherShaderLibraries - Assemble the pipeline object
○ GatherInstances - Assemble the top level acceleration structure
○ TraceRays

● Gathering libraries and gathering instances must behave identically
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Improving Performance

● Raytracing involves many more objects than primary game camera 
visibility
○ Objects behind the camera, outside the main frustum

● This puts a strain on our existing architecture
○ Our hot path on the CPU becomes even hotter.

● Changing architecture would be… massive

● Don't change the architecture, change the hit count.
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Culling

● Both techniques started with naive area-based culling
● Game camera is fixed

○ Can take advantage of this for reflections
○ But…

● Still need to consider in-game cutscenes
● We forgo a specialized solution and instead choose a generic one
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Improving Performance

● Savings depend heavily on scene construction, but…
● Reflections

○ Saved an average of 2000 objects from TLAS
○ Anywhere from 20-33% reduction

● Shadows
○ Saved anywhere from 14-20ms of CPU time (i9 9900KF)
○ Most saving in outdoor daytime scenes with no actual positional lights

■ Gracefully handles this content-specific scenario
○ Still significant in high density areas like cities
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Appearance

BVH Data
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BVH Data
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Appearance

Vertex Data Index Data

SubObject SubObject SubObject SubObject SubObject SubObject

BVH Data
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BVH Buffer

Vertex Data

SubObject SubObject SubObject SubObject SubObject SubObject
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Vertex Data

SubObject SubObject SubObject SubObject SubObject SubObject

BVH Data
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● Data augmentation is a size and offset.
● The issue here is this data is immutable.

struct SubObject
{
    // Existing fields.
    ...

    // New RT fields.
    uint32 bvhOffset;    // Offset into larger BVH buffer.
    uint32 bvhSize;      // Cached size of the BVH.
};

BVH Data
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● Parent structure manages monolithic buffer
● Ad-hoc support for compaction
● Optimizing for memory gets difficult

BVH Data

struct BottomAcceleration
{
    Buffer* bvhBuffer;

    // New offset data after compaction.
    map<uint32, uint32>* compactionInfo;
    bool compacted;
    bool allowUpdate;
};
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BVH Compaction Review

● Initially, size estimated and upper bound allocation made.

● At build completion, query the real build size.

● Create a new allocation and copy, discard the original.

1 MB

400 KB

400 KB

400 KB
X

Saved 60%!
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BVH Memory

● Initial implementation, all eligible assets included: 5+ GB BVH data
○ That probably won't work :)
○ Note: vast majority of this is SpeedTree, because instancing

● Compaction is our friend
● But it's not well-supported by the architecture

○ Not every class of asset can be compacted
● How so?
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Data Tracking

● Recall: the BVH offset and size on a SubObject is immutable.
○ Immutability is already being violated when populated at load time.

● But, still used to point to BVH location in memory
● Time to refactor.

Geometry Representation

Low-Level BVH Management

No visibility into BVH 
workings.

Can't manipulate data 
above.



Rendering Engine architecture conference 2024

 struct SubObject
 {
     // Existing fields.
     ...

     // New RT fields.
-    uint32 bvhOffset;    // Offset into larger BVH buffer.
-    uint32 bvhSize;      // Cached size of the BVH.
+    uint32 segment;      // Index into array of sub-BVHs.
 };

BVH Data
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 struct BottomAcceleration
 {
     Buffer* bvhBuffer;

-    // New offset data after compaction.
-    map<uint32, uint32>* compactionInfo;
+    // Internal tracking of sub-BVHs.
+    uint32* segmentOffsets;
+    uint32 segmentCount;
     bool compacted;
     bool allowUpdate;
 };

BVH BufferbvhBuffer

segmentOffsets

BVH Data
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● Every BVH must be built and size queried to compact the larger 
buffer.

✔

BVH Data

BVH Buffer

✔ ✔ ✔ ✔ ✔
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✔
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● Every BVH must be built and size queried to compact the larger 
buffer.

● If only one isn't, compaction can't happen.

✔

✖

BVH Data

✖

BVH Buffer

✔ ✔ ✔✔
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BVH Buffer

● Every BVH must be built and size queried to compact the larger 
buffer.

● If only one isn't, compaction can't happen.
● SubObject structure supports variable looks for assets

○ Not all SubObjects will be instantiated!

✔

✖

BVH Data

✖✔ ✖✖✔
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+struct BLAS
+{
+    Buffer* bvh;
+    bool compacted;
+};

 struct BottomAcceleration
 {
     // Internal tracking of sub-BVHs.
-    uint32* segmentOffsets;
+    BLAS* subBVHs;
     uint32 segmentCount;
-    bool compacted;
     bool allowUpdate;
 };

BVH Buffer

BVH Data
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+struct BLAS
+{
+    Buffer* bvh;
+    bool compacted;
+};

 struct BottomAcceleration
 {
     // Internal tracking of sub-BVHs.
-    uint32* segmentOffsets;
+    BLAS* subBVHs;
     uint32 segmentCount;
-    bool compacted;
     bool allowUpdate;
 };

BVH BVH BVH BVH BVH

BVH Data
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Platform Memory

● PC: buffers have min size of 64K
○ BVHs are typically much smaller than that
○ Pay the full price for each BVH created

● Bad for performance too
● Enter paging.

● NVIDIA RTX Memory Utility
○ https://github.com/NVIDIAGameWorks/RTXMU 
○ Easy to integrate
○ Custom backend supports our low-level API abstraction layer

https://github.com/NVIDIAGameWorks/RTXMU
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 struct BLAS
 {
-    Buffer* bvh;
+    rtxmu::SubAllocation bvh;
     bool compacted;
 };

 struct BottomAcceleration
 {
     // Internal tracking of sub-BVHs.
     uint32* segmentOffsets;
     BLAS* subBVHs;
     uint32 segmentCount;
     bool compacted;
     bool allowUpdate;
 };

BVH Data
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● Way better, but still a bit high.
● What other architectural components might be problematic?

BVH Memory

5.0+ GB 🠆 1.5+ GB
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Asset Streaming

● Streaming distance in the game is large
○ Often larger than TLAS bounds

● Observation: animated objects only update BVH when added to a 
TLAS

● Solution: defer allocation from Load() to Build()
○ Deallocate when not used in a TLAS

● More maturity of the design made this a much faster change

1.5+ GB 🠆 250 MB
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Consoles

● PS5 and Xbox both offer BVH builds offline
○ Better size and trace efficiency

● We build all static geometry BVH offline
○ Total of about 5GB data when compressed
○ Serialized as a data blob at end of Appearance data file

● Also does not use RTXMU, favors existing memory manager

Appearance Data Vertex/Index Data

Appearance Data Vertex/Index Data BVH Data
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Compaction of Dynamic BVH

● Misconception that this isn't possible
○ Update adjusts bounding box extents, while refit rebuilds hierarchy

● However, tradeoff with build quality
○ Quality drifts with each update

● Absorb degraded trace cost or compact more frequently?

● Ultimately didn't ship dynamic compaction.
○ Good area for future work in our ray tracing implementation
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Implementation Recap

● Design of the engine dictates ray tracing technical design
○ But it may not be the most efficient

● Ray tracing paradigms inform new engine paradigms
● Design maturity made future changes faster and easier
● Pros of BVH architecture

○ Intuitive
○ Encapsulated
○ Memory efficient
○ Flexible

 struct BLAS
 {
     rtxmu::SubAllocation bvh;

     uint32 buildSize;
     uint32 lastUsedFrame;

     bool dynamic : 1;
     bool compacted : 1;
     bool offline : 1;
 };



Preserving Content
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[image here of light leaking]
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[image here of light leaking]
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[image of changing shadow softness and shape]
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[image of changing shadow softness and shape]
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https://docs.google.com/file/d/1Hwo-0QoEOGDx6Xnt0z1BhFzfBXbshx4q/preview


Rendering Engine architecture conference 2024

[same content with raytracing on and no shadow popping]

https://docs.google.com/file/d/1I5bL1mXmtJkIksKF8mbzpvTH_3ZbxZCf/preview
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[video of VATs]

https://docs.google.com/file/d/16uEg0GPggajUhm0N_VBADiuZlA5iQI2U/preview
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[image of changing shadow softness and shape]
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[image of the player in a dark area, highlight the player shadow]
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[gif comparing original player shadow to PCSS filter shadow]
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Renderable Types

Directional Shadows Local Shadows Reflections

Opaque Objects ✔ ✔ ✔

Player ✔ ✖ ✔

SpeedTree ✔* ✔* ✔*

Particles ✖ ✖ ✔

Decals ✖ ✖ ✖

VAT ✖ ✖ ✖

* Only on PC
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[image of volumetric fog appearing in interiors]
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Hybrid Shadows

● Require three maps
○ Ray traced shadow map (done in screen space)
○ Raster shadow map of non-raytraced objects
○ Raster shadow map of all objects

● An object is considered hybrid if it can be raytraced.
● An object is considered non-hybrid if it can only be rastered.

● We're not going to consider cached shadow maps and static vs. 
dynamic objects.
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Hybrid Shadows

Hybrid Non-hybrid

Combined
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Hybrid Shadows

Ray traced light:

min( , ) and

Non-ray traced light or Volumetrics:
Non-hybrid Combined

Combined
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Summing Up

● Visual Impact
● Areas for Improvement
● Naive design is costly

○ But would that really change if designed for ray tracing?
● Conceptual challenges permeate down to technology
● Foundational work is costly
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Thank You

● Keven Cantin
● Michael Bukowski
● John Buckley
● Samuel Delmont
● Jon Lee
● Zach Vinless
● Alexander Demyanenko
● Justin Williams
● Fernando Urquijo
● Ben Hutchings

● Gustavo Samour Lopez
● Charles Zhang
● Zach Schecter
● Joel Peters
● Kevin Bell
● Chad Layton
● Lorenzo Di Spina
● Alex Mueller
● REAC Organizers



Questions?

@kevintodisco

Questions fielded by Keven Cantin - Thanks Keven!


